Journal of Geosciences and Geomatics. 2020, 8(2), 94-109
DOI: 10.12691/JGG-8-2-5
Original Research

Geochemistry of the Neoproterozoic Mbondo-Ngazi Tina Metasediments, Adamawa Area, Central Cameroon: Source Provenance and Tectonic Setting

Alexis Hamdja Ngoniri1, Timoleon Ngnotue1, , Evine Laure Tanko Njiosseu1, Patrick Ayonta Kenne1, Sylvestre Ganno2, and Jean Paul Nzenti2

1Department of Earth Sciences, University of Dschang, P.O. Box. 67 Dschang, Cameroon

2Department of Earth Sciences, University of Yaoundé I, P.O. Box 812 Yaounde, Cameroon

Pub. Date: November 17, 2020

Cite this paper

Alexis Hamdja Ngoniri, Timoleon Ngnotue, Evine Laure Tanko Njiosseu, Patrick Ayonta Kenne, Sylvestre Ganno and Jean Paul Nzenti. Geochemistry of the Neoproterozoic Mbondo-Ngazi Tina Metasediments, Adamawa Area, Central Cameroon: Source Provenance and Tectonic Setting. Journal of Geosciences and Geomatics. 2020; 8(2):94-109. doi: 10.12691/JGG-8-2-5

Abstract

The Mbondo-Ngazi Tina area belongs to the Adamawa-Yade domain within the Pan-African Central Africa Fold Belt in Cameroon (CAFB). The basement of this area is dominated by metasedimentary rocks composed of sericite schist, chlorite schist and muscovite schist. Whole-rock geochemical compositions of these rocks were investigated in order to determine their provenance and tectonic setting. The studied metasedimentary rocks have SiO2 and Al2O3 contents comparable to the average composition of the Neoproterozoic upper continental crust (UCC). These rocks are strongly depleted in CaO, MgO, and enriched in K2O, Ba and Rb with respect to UCC, reflecting K addition during diagenesis. The CIA, CIW, PIA and the SiO2/Al2O3 and Th/U ratios indicated that these rocks had suffered varying degrees of weathering as the source rocks underwent mild to moderate chemical weathering. The PAAS-normalized REE patterns are almost flat with slightly LREE depletion with respect to HREE and null to weakly positive Eu anomalies. Their chondrite-normalized REE patterns are parallel to sub-parallel, LREE-enriched, and display distinct negative Eu anomalies and weakly fractionated HREE segments. Overall, they are geochemically mature and have suffered sedimentary recycling. They derived mainy from felsic to intermediate rocks with minor contamination of mafic rocks. The Mbondo-Ngazi Tina metasedimentary rocks show REE and trace element compositions similar to those of Archean sediments, suggesting that the continental crust of the study area during the early Proterozoic had chemical compositions similar to those of the Archean crust and were probably deposited in active to passive continental margin settings.

Keywords

Metasediments, UCC, chemical weathering, Archean crust, Adamawa-Yade

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Nzenti, J.P., Njanko, T., Njiosseu, E.L.T., Tchoua, F.M., 1998. Les domaines granulitiques de la Chaîne Panafricaine Nord-Equatoriale au Cameroun. In Géologie et environnement au Cameroun, Vicat et Bilong editors, Collection Geocam, I, 255-264.
 
[2]  Nzenti, J.P., Njiosseu Tanko, T. E. L., Nzina Nchare A., 2007. The metamorphic evolution of the Paleoproterozoic high grade Banyo gneisses (Adamawa, Cameroon, Central Africa). Journal of the Cameroon Academy of Sciences, 7, 95-109.
 
[3]  Abdelsalam, M.G., Liégeois, J.-P., Stern, R.J., 2002. The Saharan Metacraton. Journal of African Earth Sciences, 34, 119-136.
 
[4]  Toteu, S.F., Penaye, J., Djomani, Y.P., 2004. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon: Canadian Journal. Earth Sciences, 41, 73-85.
 
[5]  Nzenti, J.P., Barbey, P., Bertrand, J. M.L., Macaudiere, J., 1994. La chaîne panafricaine au Cameroun: cherchons suture et modèle. In: S.G.F. édit., 15e réunion des Sciences de la Terre, Nancy, France, 99p.
 
[6]  Ngnotué, T., Nzenti, J.P., Barbey P., Tchoua, F.M., 2000. The Ntui Betamba high grade gneisses: a Northward extension of the pan-African Yaoundé gneisses in Cameroon. Journal of African Earth Sciences, 31, 369-381.
 
[7]  Djouka-Fonkwe, M.L., Schulz, B., Nzolang, C., 2008. Geochemistry of the Bafoussam PanAfrican I- and S-type granitoids in western Cameroon. Journal of African Earth Sciences, 50, 148-167.
 
[8]  Nzenti, J.P., Badibanga Kapajika, G., Wörner, Toto Ruananza Lubala, 2006. Synkinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. Journal of African Earth Sciences, 45, 74-86.
 
[9]  Nzenti, J.P., Abaga, B., Suh, C.E., Nzolang, C., 2011. Petrogenesis of peraluminous magmas from the Akum-Bamenda Massif, Pan-African Fold Belt, Cameroon. International Geology Review, 53(10), 1121-1149.
 
[10]  Kwékam, M., Liégeois, J.P., Njonfang, E., Affaton, P., Hartmann, G., Tchoua, F., 2010. Nature origin and signifcance of the Pan-African high-K calc-alkaline Fomopéa plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Sciences, 57, 79-95.
 
[11]  Kouankap Nono, G.D., Nzenti, J.P., Suh Cheo, E., Ganno, S., 2010. Geochemistry of ferriferous, high-K calc-alkaline magmas from the Banefo-Mvoutsaha Massif (NE Bafoussam), Central Domain of the Pan-African Fold Belt, Cameroon. The Open Geology Journal, 4, 15-28.
 
[12]  Nzina Nchare, A., Nzenti, J.P., Tanko Njiosseu, E.L., Ganno, S., Ngnotué, T., 2010. Synkinematic ferro-potassic magmatism from the Mekwene-Njimafofire Foumban Massif, along the Foumban-Banyo shear zone in central domain of Cameroon PanAfrican fold belt. Journal of Geology and Mining Research, 2(6), 142-158.
 
[13]  Chebeu, C., Ngo Nlend, C.D. Nzenti J-P., Ganno, S., 2011. Neoproterozoic high-K calc-alkaline granitoids from Bapa-Batié, North Equatorial Fold Belt, Central Cameroon: petrogenesis and geodynamic significance. The Open Geology Journal, 5, 1-20.
 
[14]  Tchakounté, J., Eglinger, A., Toteu, S. F., Zeh, A., Nkoumbou, C. Mvondo, O.J., Penaye, J., de Wit M., Barbey, P., 2018. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon). Precambrian Research, 299, 210-229.
 
[15]  Ngamy Kanwa, A., Tchakounte, N.J., Nkoumbou, C., Owona, S., Tchouankoue, J.P, Mvondo Ondoa, J., 2019. Petrology and geochemistry of the Yoro-Yangben Pan-African granitoid intrusion in the Archaean Adamawa-Yade crust (SW-Bafia, Cameroon). Journal of African Earth Sciences, 150, 401-414.
 
[16]  Tanko Njiosseu, E.L., Nzenti, J.P., Njanko, T., Kapajika, B., Nédelec, A., 2005. New U-Pb zircon ages from Tonga (Cameroon): coexisting Eburnean-Transamazonian (2.1 Ga) and Pan-African (0.6 Ga) imprints. Comptes Rendus Géosciences, 337, 551-562.
 
[17]  Ganwa, A., Frisch, W., Siebel, W., Shang, C.K., Mvondo, O.J., Satir, M., Tchakounte, N.J, 2008a. Zircon 207Pb-206Pb evaporation ages of Pan-African metasedimentary rocks in the Kombé-II area (Bafia Group, Cameroon): constraints on protolith age and provenance. Journal of African Earth Sciences, 51, 77-88.
 
[18]  Ganwa, A.A., Klötzli, US., Diguim Kepnamou, A., Hauzenberger, C., 2018. Multiple Ediacaran tectono-metamorphic events in the Adamawa-Yadé Domain of the Central Africa Fold Belt: Insight from the zircon U-Pb LAM-ICP-MS geochronology of the metadiorite of Meiganga (Central Cameroon). Geological Journal, 53(6), 2955-2968.
 
[19]  Tchakounté, J., Eglinger, A., Toteu, S. F., Zeh, A., Nkoumbou, C. Mvondo, O.J., Penaye, J., de Wit M., Barbey, P., 2017. The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon). Precambrian Research, 299, 210-229.
 
[20]  McLennan, S.M., Hemming, S., Taylor, S.R., Eriksson, K. A., 1995. Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwest ern North America. Geochimica et Cosmochimica Acta, 59, 1153-1177.
 
[21]  Tchaptchet Tchato D., Nzenti J.P, Njiosseu E. L., Ngnotué, T, Ganno S., 2009. Neoproterozoic metamorphic events in the kekem area (Central domain of the Cameroon North Equatorial Fold Belt): P-T data. Journal of the Cameroon Academy of Sciences, 8(2/3), 91-105.
 
[22]  Dickinson, W. R., Suczek, C. A., 1979. Plate tectonics and sandstone compositions. Bull. Am. Assoc. Pet. Geol., 63, 2164-2182.
 
[23]  Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., Ryberg, P. T., 1983. Provenance of North America Phanerozoic sandstone in relation to tectonic setting. Bull. Geol. Soc. Am., 94, 222-235.
 
[24]  Toteu, S.F., Van Schmus, W.R., Penaye, J., 2006b. The Precambrian of Central Africa: Summary and perspectives: Journal of African Earth Sciences, 44, 7-10.
 
[25]  Van Schmus, W.R., Oliveira, E.P., Da Silva Filho, A.F., Toteu, S.F., Penaye, J., Guimaraes, I.P., 2008. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt.Geol. Soc. London, Spec. Publ., 294(1), 69-99.
 
[26]  Nzenti, J.P., Barbey, P., Macaudiere, J., Soba, D., 1988. Origin and evolution of late Precambrian high - grade Yaounde gneisses (Cameroon). Precambrian Research, 38, 91-109.
 
[27]  Toteu, S.F., Van Schmus, W.R., Penaye, J., Nyobé, J.B., 1994. U-Pb and Sm-N evidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon: Precambrian Research, 67, 321-347.
 
[28]  Toteu, S.F., Penaye, J., Deloule, E., Van Schmus, W.R., Tchameni, R., 2006a. Diachronous evolution of volcanosedimentary basins north of the Congo craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaoundé Groups (Cameroon): Journal of African Earth Sciences, 44, 428-442.
 
[29]  Ngnotue, T., Ganno, S., Nzenti, J.P., Schulz, B., Tchaptchet Tchato, D., Suh Cheo, E., 2012. Geochemistry and geochronology of peraluminous High-K granitic leucosomes of Yaounde series (Cameroon): evidence for a unique Pan-African magmatism and melting event in North-Equatorial Fold Belt. International Journal of Geosciences, 3(3), 525-548.
 
[30]  Metang, V., 2015. Cartographie géologique du secteur de Matomb-Makak (Centre-sud Cameroun): Implications sur l’évolution géodynamique du groupe panafricain de Yaoundé (Unpublished Thesis). Université de Yaoundé I, 263p.
 
[31]  Toteu, S.F., Van Schmus, W.R., Penaye, J., Michard, A., 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the prePan-African history of central Africa: Precambrian Research, 108, 45-73.
 
[32]  Hamdja Ngoniri, A., Soh Tamehe, L., Ganno, S., Ngnotue, T., Zuxing Chen, Huan Li, Ayonta Kenne, P., Nzenti, JP. Geochronology and petrogenesis of the Pan-African granitoids from Mbondo-Ngazi Tina in the Adamawa-Yadé Domain, Central Cameroon. International Journal of Earth Sciences, submitted.
 
[33]  Tchameni, R., Pouclet, A., Penaye, J., Ganwa, A.A., Toteu, S.F., 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences 44, 511-529.
 
[34]  Winchester, J. A., Park, K. G., Holland, J. G., 1980. The geochemistry of Levisian semipelitic schists from the Gairloch district western Ross. Scottish Journal of Geology, 16, 165-179.
 
[35]  Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820-829.
 
[36]  Rollinson, H.R. (1993). Using Geochemical Data: Evolution, Presentation, Interpretation. Longman, Essex, England, 1-352.
 
[37]  Pearce, J.A., 1996. A user's guide to basalt discrimination diagrams. In: Wyman, D.A. (Ed.), Trace Element Geochemistry of Volcanic Rocks: Application for Massive Sulphide Exploration. Mineralogical Association of Canada, Short Course, 12, 79-113.
 
[38]  Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publishers, Oxford.
 
[39]  Cullers, R.L., Bock, B., Guidotti, C., 1997. Elemental distribution and neodymium isotopic compositions of Silurian metasediments, western Maine, USA: redistribution of the rare earth elements. Geochimica et Cosmochimica Acta, 61, 1847-1861.
 
[40]  Roddaz, M., Viers, J., Brusset, S., Baby, P., Boucayrand, C., Hérail, G., 2006. Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chemical Geology, 226, 31-65.
 
[41]  Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717.
 
[42]  Harnois, L., 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319-322.
 
[43]  Fedo, C.M., Nesbitt, H.M., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924.
 
[44]  Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 104, 1-37.
 
[45]  Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129-147.
 
[46]  McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284, 21-40.
 
[47]  Roser, B.P., Cooper, R.A., Nathan, S., Tulloch, A. J., 1996. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. Journal of Geology and Geophysics, 39, 1-16.
 
[48]  Garcia, D., Fonteilles, M., Moutte, J., 1994. Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. Journal of Geology, 102, 411-422.
 
[49]  McLennan, S.M., Taylor, S.R., McCulloch, M.T., Maynard, J.B., 1990. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta, 54, 2015-2050.
 
[50]  Broecker, W.S., Peng, T-H., 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory Columbia University, Palisades, New York, 10964.
 
[51]  Girty, G.H., Ridge, D.I., Knaack, C., Johnson, D., Al-Riyami, R.K., 1996. Provenance and Depositional Setting of Paleozoic Chert and Argillite, Sierra Nevada, California. Journal of Sedimentary Research, 66, 107-118.
 
[52]  Hayashi, K., Hiroyuki, F., Heinrich, H.D., Ohmoto, H., 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica, Acta, 61, 4115-4137.
 
[53]  Qiao, Y., Hao, Q., Peng, S., Wang, Y., Li, J., Liu, Z., 2001. Geochemical Characteristics of the Eolian Deposits in Southern China, and their Implications for Provenance and Weathering Intensity. Palaeogeography, Palaeoclimatology, Palaeoecology, 308, 513-523.
 
[54]  Sheldon, N.D., Tabor, N.J., 2009. Quantitative Paleoenvironmental and Paleoclimatic Reconstruction Using Paleosols. Earth-Science Reviews, 95, 1-52.
 
[55]  Nagarajan, R., Armstrong -Altrin, J.S., Kessler, F.L., Hidalgo-Moral, E.L., Dodge-Wan, D., Taib, N.I., 2015. Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, Northwestern Borneo. Arabian Journal of Geosciences, 8, 8549-8565.
 
[56]  Floyd P.A., Winchester, J.A., Park, R.G., 1989. Geochemistry and tectonic setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45, 203-214.
 
[57]  Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstone. Journal of Geology, 91, 611-627.
 
[58]  Bhatia, M.R., Crook, K.A., 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineralogy and Petrology, 92, 181-193.
 
[59]  Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635-650.
 
[60]  McLennan, S.M., Taylor, S.R., 1980. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature, 285, 62l-624.
 
[61]  Soh Tamehe, L., Nzepang, T.M., Wei, C.T., Ganno, S., Ngnotue, T., Kouankap, N.G.D., Simon, S.J., Zhang, J.J., Nzenti, J.P., 2018. Geology and geochemical constrains on the origin and depositional setting of Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon. Ore Geology Reviews, 95, 620-638.
 
[62]  McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. Rev. Miner. Geochem., pp. 169–200.
 
[63]  Gromet, L.P., Dymek, R.E., Haskin, L.A., Korotev, R.L., 1984. The North American shale composite: its composition, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48, 2469-2482.
 
[64]  Rudnick, R.L., Gao, S., 2003. The composition of the continental crust. In: Rudnick, R.L. (Ed.), The Crust. Elsevier-Pergamon, Oxford, pp. 1-64.