Journal of Geosciences and Geomatics. 2020, 8(1), 15-24
DOI: 10.12691/JGG-8-1-3
Original Research

Petrography and Major Element Geochemistry of the Endengue Iron Formations, Ntem Complex, South Cameroon

Robinson Tchatchueng1, , Habib Dadjo Djamo2, Timoléon Ngnotué1, Evine Laure Tanko Njiosseu1, Mamadou Traoré3, Cyriel Moudioh4, Hervé Wabo5, Cédric Djeutchou5 and Jean Paul Nzenti4

1Department of Earth Sciences, University of Dschang, P.O. Box 67 Dschang, Cameroon

2Institute for Geological and Mining Research, P.O. Box 4110 Yaounde-Cameroon

3University of Çukurova, Department of Geological Engineering, Sarıçam, Adana, Turkey

4Department of Earth Sciences, University of Yaoundé I, P.O. Box 812 Yaoundé

5Department of Geology University of Johannesburg-South Africa, P.O. Box: 524 Auckland Park 2006 Gauteng APK Campus

Pub. Date: March 03, 2020

Cite this paper

Robinson Tchatchueng, Habib Dadjo Djamo, Timoléon Ngnotué, Evine Laure Tanko Njiosseu, Mamadou Traoré, Cyriel Moudioh, Hervé Wabo, Cédric Djeutchou and Jean Paul Nzenti. Petrography and Major Element Geochemistry of the Endengue Iron Formations, Ntem Complex, South Cameroon. Journal of Geosciences and Geomatics. 2020; 8(1):15-24. doi: 10.12691/JGG-8-1-3

Abstract

The Endengue iron formations (IFs) belong to the Archaen Ntem greenstones belt at the NW edge of Congo craton and comprise magnetite-bearing gneiss associated with biotite-pyroxene gneiss and intruded by biotite granite and charnockite. The studied IFs are fine-grained; weak foliated rocks, composed of quartz-pyroxene-magnetite-plagioclase mineral assemblages, suggesting high-grade metamorphism. Whole-rock geochemical composition reveals that iron and silica are the main chemical components of the studied IFs with an average TFe2O3 + SiO2 of 93.06 wt-%, suggesting the purity of the chemical precipitation. In addition, the high average Si/Al (38.69); Fe/Ti (766.83) and Fe/Al (56.36) ratios and the Fe/Ti vs Al/(Al+Fe+Mn) plot suggest that the major components (> 80%) of the Endengue IFs are predominantly hydrothermal in origin. However, the slightly high Al2O3+TiO2 content (average of 2.14 wt-%) suggested a detrital input during their deposition. The studied IF samples with an average Total Fe content of 39.40 wt-%, low gangue (34.68 wt-% SiO2 and 1.05 wt-% Al2O3) and deleterious (P2O5: 0.07 wt-%) elements contents, correspond to accepted commercial low grade siliceous ore by global standards. The Edengue IFs shared chemical similarities with other Precambrian IFs worldwide.

Keywords

iron formation, chemical precipitation, hydrothermal origin, low grade siliceous ore, Ntem complex, southern Cameroon

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  James, H.L., Sedimentary facies of iron-formations, Econ. Geol. 49 (1954), 235-293.
 
[2]  Clout, J.M.F., Simonson, B.M., Precambrian iron formations and iron-formation hosted iron ore deposits, Economic Geology, 100th anniversary (2005), 643-679.
 
[3]  Ghosh, R., Baidya, T.K., Mesoarchean BIF and iron ores of the Badampahar greenstone belt. Iron Ore Group, East Indian Shield, Journal of Asian Earth Sciences 150 (2017), 25-44.
 
[4]  Suh, C.E., Cabral, A., Shemang, E.M., Mbinkar, L. and Mboudou, G. G. M., Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameroon, West Africa, Explor. Min. Geol. 17 (2008), 197-207.
 
[5]  Chombong, N.N., Suh, C.E., 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics, Episodes 36 (2013) 47-57.
 
[6]  Ndime, E.N., Ganno, S., Soh, Tamehe, L., Nzenti, J.P., Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa, J. Afr. Earth Sci. 148 (2018), 80-98.
 
[7]  Ndime, E.N., Ganno, S., Nzenti, J.P., Geochemistry and Pb-Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, southern Cameroon, International Journal of Earth Sciences 108 (2019), 1551-1570.
 
[8]  Teutsong, T., Bontognali, T.R.R., Ndjigui, P.D., Vrijmoed, J.C., Teagle, D., Cooper, M. and Vance, D., Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), southern Cameroon: Implications for its origin, Ore Geology Reviews 80 (2017), 267-288.
 
[9]  Chombong, N.N., Suh, C.E., Lehmann, Vishiti, B., Ilouga, A., Shemang, D.C., Tantoh, E. M., & Kedia A.C., Host rock geochemistry texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon, Applied Earth Science (2017).
 
[10]  Ganno, S., Njiosseu, T.E.L., Kouankap, N.G.D., Djoukouo, S.A.P., Moudioh, C., Ngnotué, T. and Nzenti. J.P., A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, southwestern Cameroon: Constraints from petrography and geochemistry, Ore Geology Reviews 80 (2017), 860-875.
 
[11]  Soh, T.L., Tankwa, M.N., Chongtao, W., Ganno, S., Ngnotue, T., Kouankap, N.G.D., Shaamu, J. S., Zhang, J., Nzenti, J.P., Geology and geochemical constrains on the origin and depositional setting of the Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon, Ore Geology Reviews 95 (2018), 620-638.
 
[12]  Klein, C., Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin, American Mineralogist 90 (2005), 1473-1499.
 
[13]  Maurizot, P., Abessolo, A., Feybesse, J.L., and Johan, L.P., Étude de prospection minière du Sud-Ouest Cameroun, Synthèse des travaux de 1978 à 1985, Rapport de BRGM 85 (1986), 274.
 
[14]  Boillot, G., Huchon, P., Lagabrielle, Y., Boutler, J., Introduction à la géologie, La dynamique de la Terre, Dunod (2008), 74-80.
 
[15]  Kusky, M.T., Li, X., Wang, Z., Fu, J., Ze, L., Zhu, P., « Are Wilson Cycles preserved in Archean cratons? A comparison of the North China and Slave cratons », Canadian Journal of Earth Sciences 51(3) (2013), 297-311.
 
[16]  Toteu, S.F., Penaye, J., Poudjom Djomani, Y.H., Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon, Canadian Journal of Earth Sciences 41 (2004), 73-85.
 
[17]  Shang, C.K., Liégeois, J.P., Satir, M., Frisch, W., Nsifa, E.N., Late Archaean high-K granite geochronology of the northern metacratonic margin of the Archaean Congo Craton, Southern Cameroon: evidence for Pb-loss due to non-metamorphic causes, Gondwana Research 475 (2010),1-19.
 
[18]  Van Schmus, W.R., and Toteu, S.F., Were the Congo craton and the Sào Francisco craton joined during the fusion of Gondwanaland? Eostrans AGU, 73(14), Spring Meeting, Supplement 365 (1992).
 
[19]  Tchameni, R., Mezger, K., Nsifa, N.E., and Pouclet, A., Crustal origin of Early Proterozoic syenites in the Congo Craton (Ntem Complex), South Cameroon, Lithos, 57 (1) (2001), 23-42.
 
[20]  Lerouge, C., Cocherie, A., Toteu, S.F., Milesi, J.P., Penaye, J., Tchameni, R., Nsifa, N.E., Fanning, C.M., Shrimp U/Pb zircon age evidence for paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-western Cameroon: consequences for the eburnean-transamazonian belt of NE Brazil and central Africa. Journal of African Earth Sciences 44 (2006), 413-427.
 
[21]  Shang, C.K., Satir, M., Nsifa, E.N., Liégeois, J.P., Siebel, W., Taubald, H., Archaean high-k granitoids produced by remelting of earlier Tonalite-Trondhjemite-Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. International Journal of Earth Sciences 96 (2007), 817-841.
 
[22]  Li, X-H., Chen, Y., Li, J., Yang, C., Ling, X-X., Tchouankoue, J.P., New isotopic constraints on age and origin of Mesoarchean charnockite, trondhjemite and amphibolite in the Ntem Complex of NW Congo Craton, southern Cameroon. Precambrian Research 276 (2016), 14-23.
 
[23]  Loose, D., Schenk, V., 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: significance for Palaeoproterozoic plate tectonics. Precambrian Research 304 (2018), 1-11.
 
[24]  Bouyo Houketchang M, Penaye J, Mouri H, Toteu S.F., Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: mineralogical evidence and implications for a highpressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton, Journal of African Earth Sciences 149 (2019), 215-234.
 
[25]  Nga, Essomba, T.P., Ganno, S. Tanko, J.E.L., Ndema, Mbongue, M.J.L., Kamguia, W.B., Takodjou, W.J.D., Nzenti, J.P., Geochemical constraints on the origin and tectonic setting of the serpentinized peridotites from the Paleoproterozoic Nyong series, Eseka area, SW Cameroon, Acta Geochemica (2019).
 
[26]  Whitney, D.L., Evans, B.W., Abbreviations for names of rock-forming minerals, American Mineralogist 95 (2010), 185-187.
 
[27]  Kato, Y., Kawakami, T., Kano, T., Kunugiza, K. And Swamy, N.S., Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, south India, Journal Asian Earth Sciences 14 (1996), 161-164.
 
[28]  Ganno, S., Ngnotue, T., Kouankap, N.G.D., Nzenti, J.P., Notsa, F.M., Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, southern Cameroon: Implications for the origin and depositional environment, Chemie der Erde - Geochemistry 75 (2015), 375-387.
 
[29]  Lepp, H. and Goldich, S.S., Origin of the Precambrian Iron-Formation, Economic Geology 59 (1964), 1025-1060.
 
[30]  Govett G.J.S., Origin of banded iron-formation; Geological Society of America Bulletin 77 (1966), 1191-1212.
 
[31]  Bjerrum, C.J., & Canfield, D.E., Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides, Nature, 417 (2002), 159-162.
 
[32]  Konhauser, K., Hamade, T., Raiswell, R., Morris, R., Ferris, F., Southan, G., Canfield, D., Could bacteria have formed the Precambrian banded iron formation?, Geology 30 (2002), 1079-1082.
 
[33]  Pecoits, E., Gingras, M.K., Barley, M.E., Kappler A., Posth, N.R., Konhauser, K.O., Petrography and geochemistry of the Dales Gorge banded iron formation: paragenetic sequence, source and implications for palaeo-ocean chemistry, Precambrian Research, 172 (2009), 163-187.
 
[34]  Egglseder, M.S., Cruden, A.R., Tomkins, A.G., Wilson, S.A., Langendam, A.D. Colloidal origin of microbands in banded iron formations, Geochemical Perspectives Letters, 6 (2018), 43-49.
 
[35]  Hamade, T., Konhauser, K.O., Raiswell, R., Goldsmith, S., Morris, R.C., Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations, Geology 31 (2003), 35-38.
 
[36]  Frei, R., Polat, A., Source heterogeneity for the major components of 3.7 Ga banded iron formation (Isua Greenstone Belt, western Greenland): tracing the nature of interacting water masses in BIF formation, Earth and Planetary Sciences Letters 253 (2007), 266-281.
 
[37]  Bekker, A., Slack, J.F., Planavsky, N., Krapez, B., Hofmann, A., Konhauser, K.O., Rouxel, O.J., Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic and biospheric processes, Economic Geology 105 (2010), 467-508.
 
[38]  Ganno, S., Tsozué, D., Kouankap, N.G.D., Tchouatcha, M.S., Ngnotué, T., Gamgne Takam, R., Nzenti. J.P., Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi Area. Southern Cameroon, Resource Geology 68(3) (2018), 287-302.
 
[39]  Soh, Tamehe, L., Wei, C.T., Ganno, S., Simon, S.J., Kouankap, Nono, G.D., Nzenti, J.P., Lemdjou, Y.B., Lin N.H., 2019. Geology of the Gouap iron deposit, Congo craton, southern Cameroon: implications for iron ore exploration, Ore Geology Reviews 107 (2018), 1097-1128.
 
[40]  Ewers, W.E., Morris R.C. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia, Economic Geology 76 (1981), 1929-1953.
 
[41]  Klein, C., and Beukes, N.J., Proterozoic iron-formations, In: Condie K.C., (ed) Proterozoic crustal evolution. Elsevier, Amsterdam (1992), 383-418.
 
[42]  Manikyamba, C., and Naqvi, S.M., Geochemistry of Fe-Mn formations of Archaean Sandurschist belt, India: mixing of clastic and chemical processes at a shallow shelf, Precambrian Research, 72 (1995), 69-95p.
 
[43]  Böstrom, K., Submarine volcanism as a source for iron, Earth and Planetary Sciences Letters 9 (1970), (4), 348-354.
 
[44]  Gurvich, E.G., Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation, Springer Berlin (2006), 416p.
 
[45]  Cox, G.M., Halverson, G.P., Minarik, W.G., Heron, D.P.L., Macdonald, F.A., Bellefroid, E.J., Strauss, J.V., Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance, Chemical Geology 362 (2013), 232-249.
 
[46]  Wonder, J., Spry, P., Windom, K., Geochemistry and origin of manganese-rich rocks related to iron-formation and sulfide deposits, western Georgia, Economic Geology 83 (5) (1988), 1070-1081.
 
[47]  Bonatti, E., Metallogenesis at oceanic spreading centers, Annual Reviews Earth and Planetary Sciences 3 (1975), 401-433.
 
[48]  Bostrom, K., The origin and fate of ferromanganoan active ridge sediments, Stockholm Contribution of Geology 27 (1973), 149-243.
 
[49]  Sugitani, K., Geochemical characteristics of Archean cherts and other sedimentary rocks in the Pilbara Block, Western Australia: evidence for Archean seawater enriched in hydrothermally-derived iron and silica, Precambrian Research 57 (1992), 21-47.
 
[50]  Barrett, T.J., Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the north Appenines, Italy, Chemical Geology 34 (1981), 289-317.
 
[51]  Freeman, W.H., Physical Description XIV, Illustrated 4th Edition, Published New York. (1986), ISBN 0-7167-1456-6.
 
[52]  Guilbert, J.M., Charles, F., Park, J., The geology of ore deposits, English, Book, Illustrated edition (1986), https://trove.nla.gov.au/version/22205693.
 
[53]  Clout, J.M.F., Manuel, J.R., Mineralogical, chemical, and physical characteristics of iron ore, Iron Ore (2015), http://dx.doi.org/10.1016/B978-1-78242-156-6.00002-2.
 
[54]  Belevtsev, Y.N., Kravchenko. V.M., Kulik, D.A., Belevtsev, Borisenko, R.Y., Drozdovskaya, V.G., Epatko, A.A., Zankevich, Y.M., Kalinichenko, B.A., Koval, O.A., Korzhnev, V.B., Kusheyev, M.N., Lazurenko, V.V., Litvinskaya. M.A., Nikolayenko. V.I., Pirogov. B.I., Prozhogin. L.G., Pikovskiy. V.I., Samsonov, E.S., Skvortsov, V.A., Savchenko, V.V., Stebnovskaya, L.T., Tereshchenko, Y.M., Chaykin, S.I., Yaroshchuk, M.A., Precambrian banded iron formations of the European part of the USSR, Genesis of iron-ores, Naukova Dumka Press, Kiev, Ukrainia (1991), (IGCP UNESCO Project. No 247 (in Russian)).
 
[55]  Guider, J.W., Iron ore beneficiation -key to modern steelmaking, Mineral Engineering 33 (1981), 410-413.
 
[56]  Dobbins, M.S. and Burnet, G., Production of an iron ore concentrate from the iron-rich fraction of power plant fly ash, Resource Conservation 9 (1982), 231-242.
 
[57]  Angerer, T., Hagemann, S.G., Danyushevsky, L.V., Geochemical evolution of the banded iron formation-hosted high-grade iron ore system in the Koolyanobbing Greenstone Belt, Western Australia, Economic Geology 107 (2012), 599-644.
 
[58]  Li, Z.Q., Zhang, L.C., Xue, C.J., Zheng, M.T., Zhu, M.T., Robbins, L.J., Konhauser, K. O., Earth’s youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean. Scientific Reports 8(1) (2018).
 
[59]  Prasad, K.S.S., Sankar D.B., Reddy Y.V., Geochemistry and origin of banded iron-formation from the granulitic terrain of North Arcot District, Tamil Nadu, South India, Chemical Sciences Transaction 1(3) (2012), 482-493.