Journal of Geosciences and Geomatics. 2019, 7(3), 134-144
DOI: 10.12691/JGG-7-3-4
Original Research

Assessment of Groundwater Potential in Ehime Mbano, Southeastern Nigeria

Doris N. Ndubueze1, , Magnus U. Igboekwe1 and Ebong D. Ebong2

1Department of Physics, Michael Okpara University of Agriculture Umudike, Abia State, Nigeria

2Physics Department, University of Calabar, PMB 1115, Calabar, Cross River State, Nigeria

Pub. Date: June 19, 2019

Cite this paper

Doris N. Ndubueze, Magnus U. Igboekwe and Ebong D. Ebong. Assessment of Groundwater Potential in Ehime Mbano, Southeastern Nigeria. Journal of Geosciences and Geomatics. 2019; 7(3):134-144. doi: 10.12691/JGG-7-3-4

Abstract

The electrical resistivity method involving vertical electrical sounding procedure was employed in assessing the groundwater potentials of Ehime Mbano area with the aim of delineating aquifer for sustainable groundwater development. Over sixty vertical electrical sounding were acquired within the study area using the Schlumberger electrode configuration. The results show relatively less resistive northern portions and highly resistive southern parts based on the contrast in geoelectrical values. Occasional truncation of lateral continuity of the sands and sandstones by shaly sediments were observed around the southern parts of the study which influences groundwater circulation and may constitute a factor hindering the even distribution of groundwater resources in the area. Based on the results of the inverted resistivity models the depth to aquifer should be >90 m. The sands at this depth have the capacity to permit groundwater circulation. Dar Zarouk parameters were estimated and the results mimicked the geology of the area. Longitudinal conductance values were low in the southern portion dominated by sands and sandstones while the northern portion possessed high values of longitudinal conductance resulting from clays and shales. On the contrary, the transverse resistance show higher values in the northern part. Based on the sands and sandstones that dominate the southern portions and the values of the aquifer parameters estimated in the southern parts favours groundwater circulation and possesses good groundwater exploration prospects.

Keywords

electrical resistivity, VES, groundwater potential, aquifer, Dar Zarouk parameters

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ebong, E. D., Akpan, A. E., Emeka, C. N. Urang, J. G. (2017). Groundwater quality assessment using geoelectrical and geochemical approaches: Case study of Abi Area, southeastern Nigeria. Journal of Applied Water Science. 7(5):2463-2478.
 
[2]  Kelly, W.E (1977).Geoelectric Sounding for Estimating Aquifer Hydraulic Conductivity Article in Groundwater15(6): 420-425. November 1977.
 
[3]  Nwachukwu, M.A., Huan, F., Maureen, I.A. and Umunna, F.U. (2010). The Causes and the Control of Selective Pollution of Shallow Wells by Coliform Bacteria, Imo River Basin Nigeria. Water Qual. Expo. Health,2:75-84.
 
[4]  Ebong, E.D., Akpan, A.E., Onwuegbuche, A.A. (2014). Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. Journal of African Earth Sciences, 96: 99-109.
 
[5]  Carruthers, R.M. (1985). Review of geophysical techniques for groundwater exploration in crystalline basement terrain. British Geological Survey Report. NORGRG 85/3.
 
[6]  Emenike, E.A. (2001). Geophysical exploration for groundwater in a Sedimentary Environment. A case study from Nanka over Nanka Formation in Anambra Basin, Southeastern Nigeria. Global Journal of Pure and Applied Sciences 7(1):1-11.
 
[7]  Zohdy, A. A. R., Eaton, G. P. and Mabey, D. R. (1974). Application of surface Geophysics to Groundwater Investigations, U.S.G.S Techniques of Water Resources Investigations (TWRI), 2-DI.
 
[8]  Stampolidis, A., Tsourlos, P., Soupios, P., Mimides T., Tsokas, G., Vargemezis, G. and Vafidis A (2005).Integrated geophysical investigation around the brackish spring of Rina, Kalimnos Isl., SW Greece. J. Balk GeophysSoc 8(3): 63-73.
 
[9]  Soupios, P., Kouli, M., Vallianatos, F., Vafidis, A., Stavroulakis, G., (2007). Estimation of aquifer parameters from surficial geophysical methods. A case study of Keritis Basin in Crete. J. Hydrol. 338, 122-131.
 
[10]  Kalisperi, D., Soupios, P., Kouli, M., Barsukov, P., Kershaw, S., Collins, P., Vallianatos,F. (2009). Coastal aquifer assessment using geophysical methods (TEM, VES), case study: Northern Crete, Greece, 3rd IASME/WSEAS international conference on geology andseismology (GES ‘09) Cambridge, UK, 24-26 February 2009.
 
[11]  Kirsch, R., Yaramanci, U. ( 2009). Geophysical characterisatio of aquifers. In: Kirsch, R. (Ed.), Groundwater Geophysics: A tool for hydrogeology, second ed. Springer- Verlag, Berlin Hendelberg, p. 548p.
 
[12]  Gemail, K.S., El-Shishtawy, A.M., El-Alfy, M., Ghoneim, M.F., Abd El-Bary, M., (2011). Assessment of aquifer vulnerability to industrial waste water using resistivity measurements. A case study, along El-Gharbyia main drain, Nile Delta, Egypt. J. Appl. Geophys. 75, 140-150.
 
[13]  Aristodemou, E., Thomas-Betts, A. (2000). DC resistivity and induced polarisation investigations at a waste disposal site and its environments. J. Appl. Geophys. 44, 275-302.
 
[14]  Kirkegaard, C., Sonnenborg, T.O., Auken, E., Jørgensen, F., (2011). Salinity distribution in heterogeneous coastal aquifers mapped by airborne electromagnetic. Vadose Zone J. 10, 125 135.
 
[15]  Adhikari, P., Shukla, M.K., Mexal, J.G.,(2011). Spatial variability of electrical conductivity of desert soil irrigated with treated wastewater: Implications for irrigation management. J. Appl. Environ. Soil Sci. 504249, 1-11.
 
[16]  Mele, M., Bersezio, R., Giudici, M., Rusnighi, Y., Lupis, D. (2010). The architecture of alluvial aquifers: an integrated geological–geophysical methodology for multiscale characterization. Mem. Descr. Carta Geol. d’It XC, 209-224.
 
[17]  Yadav, G.S., Dasgupta, A.S., Sinha, R., Lal, T., Srivastava, K.M., Singh, S.K. (2010). Shallow sub-surface stratigraphy of interfluves inferred from vertical electric soundings in western Ganga plains, India. Quatern. Int. 227, 104-115.
 
[18]  AIfred, P.C. (1992). Trace element in terrestrial environments 2nd ed. New York, Springer pp92.
 
[19]  Gorrel, H.A 1990. Classification of formation of formation waters based on sodium chloride content. Amer. Ass of pet Geologists Bull. Vol 42 pp 275.
 
[20]  Stephen, F.O (2004). Groundwater quality production. A guide to water service companies, Manchester authorities and environment agencies, World Bank Publications pp250-280.
 
[21]  Dever and James (1985). Basic water requirements for human activities meeting basic needs. Water international paper vol.21, pp83-92.
 
[22]  Iloeje, N.P (1981). A new Geolography of Nigeria (A new revised edition) published in Great Britian by William Clowes Beccles Ltd, London, pp 85-120.
 
[23]  Reyment, A. (1965). Aspects of the geology of Nigeria. Ibadan University Press 145 p.
 
[24]  Macdonald, D., Dixon, A., Newell, A. and Hallaways, A. (2011), Groundwater flooding within an urbanized flood plain. J. Flood Risk Manage, 5: 68-80.
 
[25]  Nwankwo, L. I. (2011). 2D Resistivity Survey for Groundwater Exploration in a Hard Rock Terrain: A Case Study of MAGDAS Observatory, UNILORIN, Nigeria. Asian Journal of Earth Sciences, 4: 46-53.
 
[26]  Onunkwo-Akunne, A and Ahiarakwem C.A,( 2001). Hydrocarbon and environment, cape publishers, No 17 Alaenyi St. Owerri.
 
[27]  Mbonu, P.D.C., Ebeniro, J.O., Ofoegbu, C.O. and Ekine, A.E. (1991). Geoelectric sounding for the determination of aquifer characteristics in parts of the Umuahia area of Nigeria. Geophysics Journal 56: 284-291.
 
[28]  Ogala, J. E., (2011). Source rock potential and thermal maturity of the Tertiary Lignite series in the Ogwashi-Asaba Formation, southern Nigeria. Asian Journal of Earth Sciences, 4:157-170.
 
[29]  Vender Velpen BPA (1988). A computer processing package for D.C. Resistivity interpretation for an IBM compatibles, ITC JouR, Natherlands Vol-4.
 
[30]  Archie, G.E. (1942). The electrical resistivity logs as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Eng. J. 146, 54-62.
 
[31]  Metwaly, M., Khalil, M., Al-Sayed, E., Osman, S., (2006). A hydrogeophysical study to estimate water seepage from northwestern Lake Nasser, Egypt. J. Geophys. Eng.3, 21-27.
 
[32]  Smith, R.C., Sjogren, D.B.(2006). An evaluation of electrical resistivity imaging (ERI) in Quaternary sediments, Southern Alberta, Canada. Geosphere 2 (6), 287-298.
 
[33]  Jackson, P.N., Taylor, S.D., Stanford, P.N., (1978). Resistivity-porosity–particle shape relationship for marine sands. Geophysics 43, 1250-1268.
 
[34]  Braga, A.C., Filho, W.M., Dourado, J.C.,( 2006). Resistivity (DC) method applied to aquifer protection studies. Rev. Brasil. Geof. 24 (4), 573-581.
 
[35]  Batte, A.G., Barifaijo, E., Keberu, J.M., Kawule, W., Muwanga, A., Owor, M., Kisekulo, J. (2010). Correlation of geoelectric data with aquifer parameters to delineate the groundwater potential of hard rock terrain in Central Uganda. Pure Appl. Geophys. J. 167, 1549-1559.
 
[36]  Singh, U.K., Das, R.K., Hodlur, G.K. (2004). Significance of Dar-Zarrouk parameters in the exploration of quality affected coastal aquifer systems. J. Environ. Geol. 45, 696-702.
 
[37]  Sinha, R., Israil, M., Singhal, D.C., (2009). A hydrogeophysical model of the relationship between geoelectric and hydraulic parameters of anisotropic aquifers. Hydrogeol. J. 7, 495-503.
 
[38]  Gowd, S.S. (2004). Electrical resistivity surveys to delineate groundwater potential aquifers in Peddavanka watershed, Anantapur District, Andhra Pradesh, India. J. Environ. Geol. 46, 118-131.
 
[39]  Kumar, M.S., Gnanasundar, D., Elango, L., (2001). Geophysical studies to determine hydraulic characteristics of an alluvial aquifer. J. Environ. Hydrol. 9 (15), 1-8.
 
[40]  Chang, S.W., Clement, T.P., Simpson, M.J., Lee, K., (2011). Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 34, 1283-1291.
 
[41]  Ayolabi, E.A., Folorunso, A.F., Otekunrin, A.O., (2010). Hydrogeophysical mapping of aquifers in new Foursquare Camp, Ajebo, Southwestern Nigeria. J. Appl. Sci. Res.6 (12), 2018-2025.
 
[42]  Khalil, M.H., (2009). Hydrogeophysical assessment of Wadi El-Sheikh aquifer, Saint Katherine, South Sinai, Egypt. J. Environ. Eng. Geophys. 14 (2), 77-86.
 
[43]  Jonnel and Geoflux Consults (2010). A Geophysical Survey Report submitted to Anambra Imo River Basin and Rural Development Authority, Owerri.
 
[44]  Govinda Services (2012).A Geophysical Survey Report submitted to Anambra Imo River Basin and Rural Development Authority, Owerri.
 
[45]  Geoprobe Int’l Consult (2015).A Geophysical Survey Report submitted to Anambra Imo River Basin and Rural Development Authority, Owerri.