Journal of Geosciences and Geomatics. 2019, 7(2), 54-65
DOI: 10.12691/JGG-7-2-1
Original Research

Watersheds Morphometry and Structural Interpretation of Lineaments Extracted from SRTM Data in the Mayo-Kani Division Far-Nord Region, (Cameroon)

Jean Jacques Nguimbous-Kouoh1, , Dieudonné Minyem2, Richard Tanwi Ghogomu3, Simon Ngos III1 and Eliezer Manguelle-Dicoum4

11Department of Mines, Petroleum, Gas and Water Resources Exploration, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08 Kaele, Cameroon

2Department of Mining Engineering and Mineral Processing, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08 Kaele, Cameroon

3Department of Industrial Security, Quality and Environment, Faculty of Mines and Petroleum Industries, University of Maroua, P.O. Box 08 Kaele, Cameroon

4Department of Physics, Faculty of Science, University of Yaoundé I, PO Box 6052 Yaoundé, Cameroon

Pub. Date: February 11, 2019

Cite this paper

Jean Jacques Nguimbous-Kouoh, Dieudonné Minyem, Richard Tanwi Ghogomu, Simon Ngos III and Eliezer Manguelle-Dicoum. Watersheds Morphometry and Structural Interpretation of Lineaments Extracted from SRTM Data in the Mayo-Kani Division Far-Nord Region, (Cameroon). Journal of Geosciences and Geomatics. 2019; 7(2):54-65. doi: 10.12691/JGG-7-2-1

Abstract

In the Far-North Region of Cameroon, the high rate of weathering and erosion of rocks do not allow to map the hydrological and geological structures in the field. This paper aims to test the combined use of field topographic data and Shuttler Radar Topography Mission (SRTM) data to define watershed morphometry, highlight the different erosion factors, and characterize the structural lineaments of the Mayo-Kani Division, within the Far-North Region of Cameroon. All these are done using; watersheds, hydrographic network, slopes, manual lineaments and automatic lineaments maps. These treatment techniques used (filtering, enhancement and slope analyses) allows: to morphologically characterize the ten identified Mayo-Kani watersheds, to measure the erodibility rate of the watersheds using the Universal Soil Loss Equation (USLE) and to compute the fracture maps. This last operation was validated using ground truth field observations and the literature review. Fracture networks were analyzed using statistical analysis techniques by studying fracture length distribution laws.

Keywords

satellite imagery, SRTM, GIS, morphometry, structural fracture

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Saley, M.B., 2003. Hydrogeological information system with spatial reference, pseudo-image discontinuities and thematic mapping of water resources in the semi-mountainous region of western Côte d'Ivoire. Thesis of Doct. Unique. Univ. Abidjan. 211p.
 
[2]  Kouamé, K.F., Akaffou, A.G., Lasm, T., De-Dreuzy, J.R., Davy, P. and Bour, O., 2005. Simulation of flows in fractured reservoirs: application to Archaean basement of Touba (North-West of Côte d'Ivoire). Proceedings of the International Symposium SITIS 05, Yaoundé (Cameroon), Nov. 27-Dec. 2005, p. 39-46.
 
[3]  Raharimahefa, T. and Kusky, T.M., 2006. Structural and remote sensing studies of the southern Betsimisaraka Suture, Madagascar; Gondwana Res. 10(1-2) 186-197.
 
[4]  Leblanc, M., Favreau, G., Sarah, T., Leduc, C., Razack, M. and Mofor, L., 2007. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Hydrogeology journal, vol. 15, p. 97-100.
 
[5]  Pereira, A.J.S.C., Victoria, S., Vicente, A.M.P and Neves, L.J.P.F., 2008. Structural lineaments in a volcanic island evaluated through remote sensing techniques; International Geoscience and Remote Sensing Symposium (IGARSS), Art. No. 4423127, 1632-1635.
 
[6]  Youan-Ta, M., 2008. Contribution of remote sensing and geographic information systems to the hydrogeological prospection of the Precambrian basement of West Africa: Case of the Bondoukou region North East of Ivory Coast. Single doctoral thesis, University of Cocody-Abidjan (Ivory Coast), 236 p.
 
[7]  Youan-Ta, M., Lasm, T., Jourda, J.P., Kouame, K.F., Razack, M., 2008. Structural mapping by Landsat-7 ETM + satellite imagery and analysis of fracture networks of the Precambrian basement of the Bondoukou region (north-eastern Ivory Coast). Remote sensing, 2: 34-42.
 
[8]  Yao, K.A., Yao, G.F., Alui, A.K., N’Guessan, A.K., Tiémoko, T.P., Yao Konan Kloman, Y.K., 2008. Morpho-pedological study of the watershed of Mount Blanguand in the Yaoure Massif in the central region of Ivory Coast. Africa Sci., 4 (3): 426-451.
 
[9]  N’Go, A.Y., Lasm, T., Koïta, M., Savane, I., 2010. Extraction by remote sensing of major fracture networks of the Precambrian basement of the Dimbokro region (Central-East of Ivory Coast). Remote sensing, 9 (1): 33-42.
 
[10]  Yao, K.T., Fouche-Grobla, O., Yei, O.M. and Assoma T.V., 2012. Extraction of structural lineaments from satellite images, and estimation of induced biases, in a metamorphosed Precambrian basement. Remote Sensing Review, 10, 4: 161-178.
 
[11]  Akame, J.M., Mvondo-ondoa, J., Olinga, J.B., Essono, J and Mbih-Kemeng, P., 2013. Application of (DTM) SRTM numeric field models for structural mapping lineaments: Application to the Archean Mezesse, East of Sangmelima (South Cameroon). Geo-Eco-Trop., 2013, 37, 1: 71-80.
 
[12]  Dumort, J.C and Péronne, Y., 1966. Explanatory note on the sheet of Maroua. 67p.
 
[13]  Louis, P., 1970. Geophysical contribution to the geological knowledge of the Lake Chad Basin. bulletin ORSTOM, 42.
 
[14]  Ewodo-Mboudou, G., Bon, A.F., Bineli, E., Ntep, F., Ombolo, A., 2017. Characterization of the productivity of basement aquifers in the Far-North region, Cameroon. Journal of the Cameroon academy of sciences vol. 14 no. 1.
 
[15]  Ngounou-Ngatcha, B., 1993. Hydrogeology of complex aquifers in semi-arid zone. Quaternary aquifers of Grand Yaere (northern Cameroon). PhD, Univ. from Grenoble I, 357p.
 
[16]  Ngounou-Ngatcha, B., Mudry, J., Wakponou, A., Ekodeck, G.E., and Sarrot Reynauld, J., 2001. The Limani-Yagoua sandy belt (North Cameroon) and its hydraulic role. J. Afr. Earth Sci., 32, 307-316.
 
[17]  Ngako, V., Affaton, P., Nnange, J.M., Njanko, T., 2003. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. Journal of African Earth Sciences 36, 207-214.
 
[18]  Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounté, J., Ganwa, A., Minyem, D., Nsifa, E.N., 2004. The 2.1 Ga West Central African belt in Cameroon. Journal of African Earth Sciences 39, 159-164.
 
[19]  Tchameni, R., Pouclet, A., Penaye, J., Ganwa, A. A., Toteu, S.F. 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. Journal of African Earth Sciences 44/4-5, 511-529.
 
[20]  Penaye, J., Kröner, A., Toteu, S.F., Van Schmus, W.R., Doumnang, J.C., 2006. Evolution of the Mayo-Kebbi region as revealed by zircon dating: an early (ca. 740 Ma) PanAfrican magmatic arc in southwestern Chad. Journal of African Earth Sciences 44, 530-542.
 
[21]  Ngako, V., Affaton, P., Njonfang, E., 2008. Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana. Gondwana Research 14, 509-522.
 
[22]  Njanko, T., Nédélec, A., Kwékam, M., Siqueira, R., Esteban, L., 2010. Emplacement and deformation of the Fomopéa pluton: implication for the Pan-African history of Western Cameroon. Journal of Structural Geology 32, 306-320.
 
[23]  Ganwa, A.A, Siebel, W., Frisch, W., Shang, C.K., 2011. Geochemistry of magmatic rocks and time constraints on deformational phases and shear zone slip in the Méiganga area, central Cameroon. International Geology Review 53, 759-784.
 
[24]  Moussa, I., 2011. Neoproterozoic crustal growth and differentiation: example of the Mayo-Kebbi pan-African domain in southwestern Chad. University Henri Poincaré, Nancy, France, pp. 339, Ph.D. Thesis.
 
[25]  Kouske, A.P., Suh, C.E, Ghogomu, R.T., Ngako, V., 2012. Na-Metasomatism and Uranium Mineralization during a Two-Stage Albitization at Kitongo, Northern Cameroon: Structural and geochemical evidence. International Journal of Geosciences 3, 258-279.
 
[26]  Moussa, I., André-Mayer, A.S., Vanderhaeghe, O., Barbey, P., Deloule, E., 2012. A-type granites from the Pan-African orogenic belt in south-western Chad constrained using geochemistry, Sr–Nd isotopes and U–Pb geochronology. Lithos 153, 39-52.
 
[27]  Wambara, B., Wapouo, R. and Djimeli, A., 2017. Contribution of remote sensing and geographic information system to map geological and minerals formations in the Mayo-Kani region of (Cameroon). Academic Internship Report 60p.
 
[28]  Jackson, T.J., 2002. Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeology journal n.° 10, p.40-51.
 
[29]  Brunner P., Hendricks Franssen H.J., Kgotlhang L., Bauer-Gottwein P., and Kinzelbach W., 2007. How can remote sensing contribute in groundwater modeling; Hydrogeology Journal, n°. 15, p. 5-18.
 
[30]  Birkett, C.M., 2000. Synergistic Remote Sensing of Lake Chad: Variability of Basin Inundation. Remote Sens. Environ. 72: 218-236.
 
[31]  Leduc, C., Sabljak, S., Taupin, J.D., Marlin, C., Favreau, G., 2000. Recharge of the Quaternary water table in the northwestern Lake Chad basin (southeastern Niger) estimated from isotopes. C. R. Acad. Sci., Paris IIa 330(5): 355-361.
 
[32]  Edmunds, W.M., Fellman, E., Goni, I.B., Prudhomme, C., 2002. Spatial and temporal distribution of groundwater recharge in northern Nigeria. Hydrogeol. J. 10(1):205-215.
 
[33]  Leblanc, M., 2002. The use of remote sensing and GIS for water resources management of large semi-arid regions: a case study of the Lake Chad Basin, Africa. PhD Thesis, School of Technology, University of Glamorgan, UK and School of Geosciences, Poitiers University, France.
 
[34]  Leblanc, M., Razack, M., Dagorne, D., Mofor, L., Jones, C., 2003a. Application of Meteosat thermal data to map soil infiltrability in the central part of the Lake Chad basin, Africa., Geophys. Res. Lett., 30(19), 1998.
 
[35]  Leblanc, M., Leduc, C., Razack, M., Lemoalle, J., Dagorne, D., Mofor, L., 2003b. Application of remote sensing and GIS for groundwater modelling of large semiarid areas: example of the Lake Chad Basin, Africa. In: Servat E, Najem W, Leduc C, Shakeel A (eds) Hydrology of Mediterranean and Semiarid Regions. IAHS Publ. 278, IAHS Press, Wallingford, UK. 186-192.
 
[36]  Leblanc, M., Leduc, C., Stagnitti, F., Van Oevelen, P.J., Jones, C, Mofor L, Razack M, Favreau G 2006a. Evidence for Megalake Chad, north-central Africa, during the late Quaternary from satellite data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 230: 230-242.
 
[37]  Leblanc, M., Favreau, G., Maley, J., Nazoumou, Y., Leduc, C., Stagnitti, F., Van Oevelen, P.J., Delclaux, F., Lemoalle, J., 2006b. Reconstruction of Megalake Chad using Shuttle Radar Topographic Mission data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239:16-27.
 
[38]  Wischmeier, W.H., Smith, D.D., 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Science and Education Administration: Washington, DC, USA, 1978; p. 58.
 
[39]  Mariano Moreno de las Heras, Lukas Graf, Joan Estrany, Mauricio Ruiz, 2018. Accuracy Assessment of Digital Terrain Model Dataset Sources for Hydro-geomorphological Modelling in Small Mediterranean Catchments. Remote Sens. 2018, 10, 2014.
 
[40]  Kabir Uddin, Mir Abdul Matin and Sajana Maharjan, 2018. Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal. Sustainability 2018, 10, 4715.
 
[41]  Geomatica., 2016. Geomatica software enables users to apply imagery in support of a wide range of ... popular software for remote sensing, photogrammetry, GIS, and cartography.
 
[42]  Hoffmann, J. and Sander, P., 2007. Remote sensing and GIS in hydrogeology. Hydrogeology Journal 15(1): 1-3.