Journal of Geosciences and Geomatics. 2019, 7(1), 28-41
DOI: 10.12691/JGG-7-1-4
Original Research

Mapping Hydrothermal Alteration Targets from Landsat 8 OLI/TIRS and Magnetic Data Using Digital Image Processing Techniques in Garoua, North Cameroon

Quentin Marc Anaba Fotze1, 2, , Anatole Eugene Djieto Lordon1, Joseph Penaye2, Jean Paul Sep2 and Mary Immaculate Neh Fru1, 2

1Department of Geology, University of Buea, P.O Box 63 Buea, Cameroon

2Centre for Geological and Mining Research, P.O Box 333 Garoua, Cameroon

Pub. Date: February 09, 2019

Cite this paper

Quentin Marc Anaba Fotze, Anatole Eugene Djieto Lordon, Joseph Penaye, Jean Paul Sep and Mary Immaculate Neh Fru. Mapping Hydrothermal Alteration Targets from Landsat 8 OLI/TIRS and Magnetic Data Using Digital Image Processing Techniques in Garoua, North Cameroon. Journal of Geosciences and Geomatics. 2019; 7(1):28-41. doi: 10.12691/JGG-7-1-4

Abstract

A geological based remote sensing study was carried out over the Poli group in Garoua (northern Cameroon), renowned for its hydrothermally occurring mineralizations (Gold and Uranium). In this study, Landsat 8 OLI/TIRS coupled with magnetic data were used in order to realize a regional litho-structural mapping of hydrothermal alteration targets, required for mineral exploration. Hence, the enhancement of both Landsat 8 and magnetic data was achieved via digital image processing (DIP) techniques notably Band rationing (BR), Principal Component Analysis (PCA), Horizontal gradient (HG), and lineament extraction algorithms. Based on reference band ratio combinations (Sultan’s and Kaufmann’s) and Crosta Technique (PCA analysis), hydrothermally altered minerals such as hydroxyl-bearing minerals and iron oxides were identified. The PCA map was shown to better illustrate hydrothermally altered areas than Band ratios. Thus, a classification map emphasizing on mineral targets was obtained from the PCA map. Besides, the CET grid analysis tool (horizontal gradient) from Geosoft software 8.4 and the line algorithm (pan band 8) from Geomatica 2013 allowed the extraction of subsurface and surface lineaments respectively. The resulting lineaments showed a predominant E-W trending direction, which suggests a major tectonic event having prevailed within the area. Other directions include NE-SW/ENE-WSW, and N-S. The generation of a target exploration map, via ArcGIS 10.4.1, was performed by the overlay of hydrothermal alteration mapping and structural mapping. New regional maps, providing a useful insight for further mining exploration, were obtained.

Keywords

digital image processing, hydrothermal alteration mapping, landsat 8, magnetic data, Poli group, structural mapping

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Kaufmann, H. Concepts, processing and results, International Journal of Remote Sensing. 9 (10-11), 1639-1658, 1988.
 
[2]  Sultan, M., Arvidson, R. E., Sturchio, N. C., and Guinness, E. A. Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt, Geological Society of America Bulletin, 99(6), 748, 1987.
 
[3]  Sabins, F.F. Remote sensing for mineral exploration, Ore Geology Review, 14, 157-183, 1999.
 
[4]  Abate Essi, J.M., Yene Atangana, J.Q. Interpretation of gravity data derived from the Earth Gravitational Model EGM2008 in the Center-North Cameroon: structural and mining implications, Arab J Geosci 10: 130, 2017.
 
[5]  Mouzong, M. P., Kamguia, J., Nguiya, S., Shandini, Y., Manguelle-Dicoum, E. Geometrical and structural characterization of Garoua sedimentary basin, Benue Trough, North Cameroon, using gravity data, J Biol Earth Sci, 2014, 4(1): E25-E33, 2014.
 
[6]  Akame, J.M., Mvondo Ondoa, J., Assatse, T.W., Owona, S., Olinga, J.B, Messi, O.E.J., Ntomba, S. Apport des images Landsat7 ETM+ à l’étude structurale du socle archéen de Sangmélima (Sud-Cameroun), Revue Française de Photogrammétrie et deTélédétection, 206, 15-25, 2014.
 
[7]  Takodjou Wambo, J.D., Ganno S., Afahnwie, N.A., Nomo, N.E., Mvondo, O.J., and Nzenti, J.P. Use of Landsat 7 ETM+ Data for the Geological Structure Interpretation: Case Study of the Ngoura Colomines Area, Eastern Cameroon, Journal of Geosciences and Geomatics, vol. 4, no. 3: 61-72, 2016.
 
[8]  Binam Mandeng, E.P., et al. Lithologic and structural mapping of the Abiete–Toko golddistrict in southern Cameroon, using Landsat 7 ETM+/SRTM, C. R. Geoscience, 2018.
 
[9]  Mwaniki, M. W., Moeller, M. S., and Schellmann, G. A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya, ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 897-903, 2015.
 
[10]  Embui, V.F., Omang, B.O., Che, V.B., Nforba, M.T., Suh, E.C. Gold grade variation and stream sediment geochemistry of the Vaimba-Lidi drainage system, northern Cameroon (West Africa), Nat Sci 5: 282-290, 2013.
 
[11]  Kouske, A.P., Suh, C.E., Ghogomu, R.T., Ngako V. Na-metasomatism and uranium mineralization during a two-stage albitization at Kitongo, northern Cameroon: structural and geochemical evidence, International J Geosc 3: 258-279, 2012.
 
[12]  Abdelsalam, G.M., Liégeois, L., and Stern, R.J. The Saharan Metacraton, Journal of African Earth Sciences 34, 119-136, 2002.
 
[13]  Toteu, S.F., Penaye, J., Poudjom Djomani, Y.H., Geodynamic evolution of the pan-African belt in Central Africa with special reference to Cameroon, Can J Earth Sci 41:73-85, 2004.
 
[14]  Penaye, J., Kröner, A., Toteu, S.F., Van Schmus, W.R., Doumnang, J.C. Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (ca. 740 Ma) pan-African magmatic arc in southwestern Chad, J Afr Earth Sci 44:530-542, 2006.
 
[15]  Pinna, P., Calvez, J.Y., Abessolo, A., Angel, J.M., Mekoulou-Mekoulou, T., Mananga, G., Vernhet, Y. Neoproterozoic events in the Tcholliré area, pan african crustal growth and geodynamics in central-northern Cameroon (Adamawa and north provinces). Afr Earth Sci (4):347-353, 1994.
 
[16]  Njel, U.O. Paléogéographie d’un segment de l’orogenèse panafricaine: la ceinture volcano-sédimentaire de Poli (Nord Cameroun). C R Acad Sci Paris 303:1737-1742, 1986.
 
[17]  Toteu, S.F., Penaye, J., Deloule, E., Van Schmus, W.R., Tchameni, R. Diachronous Evolution of Volcano- Sedimentary Basins North of the Congo Craton, Insights from U-Pb ion Microprobe Dating of Zircons from the Poli, Lom and Yaounde’ Groups (Cameroon), Afr Earth Sci (44): 428-442, 2006.
 
[18]  Toteu, S.F., Penaye, J., Deschamps, Y., Maldan, F., Nyama Atibagoua, B., Bouyo, H.M., Sep, N.J., Mbola, N.S.P. Géologie et ressources minérales du Cameroun 1/1.000.000. 33rd International Congress, Oslo, Norway, 6-14 August 2008.
 
[19]  Benkhelil, J. Structure and Geodynamics Evolution of the intracontinental Benue-Trough (Nigeria), Thesis, University of Nice, Pub Elf (Nigeria) Ltd. 202 p, 1986.
 
[20]  Schwoerer, P. Carte géologique de reconnaissance du Cameroun au 1/500000ème. Feuille NC 33 SO 0 53 Garoua-Est avec notice explicative, Publication de la Direction des Mines et de la Géologie du Cameroun. Imprimerie Nationale, Yaoundé Cameroun, 1962.
 
[21]  Pinna, P., Edimo, A., Jézéquel, J., Tchountchoui, D., Ebotayuk-Ebop, M. Inventaire minier du Centre-Nord Cameroun, (troisième phase). Open-file Report 88 CMR 168. Bureau de Recherches Géologiques et Minières, France. 173p, 1989.
 
[22]  Maus, S., et al. EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochem, Geophys, Geosyst., 10, Q08005, 2009.
 
[23]  Abrams, M.J., Brown, D., Leple, L., and Sadowski, R. Remote sensing of porphyry copper deposits in Southern Arizona, Economic Geology, 78, pp.591 -604, 1983.
 
[24]  Ali, E. A., El Khidir, S. O., Babikir A. A., and Abdelrahnam, E. M. Landsat ETM+7 Digital Image Processing Techniques for Lithological and Structural Lineament Enhancement: Case Study Around Abidiya Area, Sudan, The Open Remote Sensing Journal, 5(1), 83-89, 2012.
 
[25]  Abdelkareem, M., Othman, I., Kamal El Din G. Lithologic Mapping using Remote Sensing Data in Abu Marawat Area, Eastern Desert of Egypt, International Journal of Advanced Remote Sensing and GIS, Volume 6, Issue 1, pp. 2171-2177, 2017.
 
[26]  Crosta, A.P, And Moore, J. McM. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain. Proceedings of the 9th Thematic Conference on Remote Sensing for Exploration Geology, Calgary (Ann Arbor, MI: Environmental Research Institute of Michigan), pp. 1173-1187, 1989.
 
[27]  O’leary, D. W., Freidman, J. D., and Pohn, H. A. Lineament, linear, lineation: Some proposed new definitions for old terms, Geol. Soc. Am. Bull. 87 1463-1469, 1976.
 
[28]  Phillips, J.D. Processing and interpretation of aeromagnetic data for the Santa Cruz Basin - Patahonia Mountains area, south-Central Arizona, U.S. Geological Survey Open-File Report, Arizona, pp 02-98, 1998.
 
[29]  Tchameni, R., Doumnang, J.C., Deudibaye, M., Branquet, Y. On the occurrence of gold mineralization in the Pala Neoproterozoic formations, south-western Chad. Afr Earth Sci 84:36-46, 2013.
 
[30]  Geosoft Incorporation. OASIS Montaj Version 8.4 User Guide, Geosoft Incorporated, Toronto, 2015.
 
[31]  Salem and Ravat. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data, GEOPHYSICS, VOL. 68, NO. 6; P. 1952-1961, 2003.
 
[32]  Van Schmus, W.R., Oliveira, E.P., Da Silva Filho, A.F., Toteu, S.F., Penaye, J., Guimães, I.P. Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. J Geol Soc Lond 294:69-99, 2008.