Journal of Geosciences and Geomatics. 2018, 6(2), 65-76
DOI: 10.12691/JGG-6-2-4
Original Research

Contrasting Ba-Sr Granitoids from Bamenda Area, NW Cameroon: Sources Characteristics and Implications for the Evolution of the Pan African Fold Belt

Gus Djibril KOUANKAP NONO1, , Pierre WOTCHOKO1, Alice MAGHA1, Sylvestre GANNO2, Ndam NJOYA1, Aloysius AFAHNWIE NGAMBU3, Jean Paul NZENTI2 and Veronique KAMGANG KABEYENE2

1Department of Geology, HTTC, University of Bamenda, P.O.Box 39 Bambili, Bamenda, Cameroon

2Department of Earth Sciences, Faculty of Sciences, University of Yaoundé 1, P.O.Box 812, Yaoundé, Cameroon

3Department of Geology, University of Buea, P.O.Box 63 Buea, Cameroon

Pub. Date: August 13, 2018

Cite this paper

Gus Djibril KOUANKAP NONO, Pierre WOTCHOKO, Alice MAGHA, Sylvestre GANNO, Ndam NJOYA, Aloysius AFAHNWIE NGAMBU, Jean Paul NZENTI and Veronique KAMGANG KABEYENE. Contrasting Ba-Sr Granitoids from Bamenda Area, NW Cameroon: Sources Characteristics and Implications for the Evolution of the Pan African Fold Belt. Journal of Geosciences and Geomatics. 2018; 6(2):65-76. doi: 10.12691/JGG-6-2-4

Abstract

The basement rocks of Bamenda town are mainly covered by volcanic rocks and are made up of two distinct types of granitoids: granites and leucogranites. These basement rocks belong geochemically to the same granite field. The studied granitoids are silica rich, with concentrations ranging from 70 to 73% in granite and 73 to 76% in leucogranite. Both belong to high-K calc-alcaline series with granite being magnesian and more potassic (Na2O/K2O < 1) whereas the leucogranite is ferriferous and similar to Na-granitoids (Na2O/K2O >1). Leucogranites are low Ba-Sr granitoids, strongly peraluminous (A/CNK > 1.1) and plot in the field of S-type granites, while granites are high Ba-Sr granitoids, slightly peraluminous and plot in the field of I-type granitoids. The chondrite-normalized REE patterns show more LREE enrichment in granites (>100*chondrite) than in leucogranites (>10*chondrite). Major and trace element compositions of the leucogranites and granites indicate crustal derivation from the partial melting of metapelite and metagreywacke respectively. The REE patterns display pronounced negative Eu anomalies (Eu/Eu* = 0.23-0.36) in leucogranites due to low degree of partial melting of a plagioclase depleted crustal source, and weakly negative to null Eu anomalies (Eu/Eu* = 0.81-1.08) in granites due to high degree of partial melting. The estimated temperatures of Bamenda granitoids magma range between 800°C and 950°C. Bamenda I-type granites are syn-tectonic and are similar to the other granitoids of the central domain of the Pan-African North-Equatorial Fold belt in Cameroon. Bamenda S-type peraluminous leucogranites are post-tectonic and chemically similar to the Himalayan peraluminous leucogranites. Furthermore, decompression model may be related to Bamenda leucogranite formation. Tectonically, the studied granitoids are related to crustal delamination characterizing the post-collisional event within the Pan African Fold Belt.

Keywords

granites, High-K calc-alcaline series, peraluminous, metaluminous, crustal source, bamenda

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Déruelle, B., Ngounouno, I. and Demaiffe, D., 2007. The “Cameroon Hot Line” (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. Comptes Rendus Geoscience 339, 589-600.
 
[2]  Gountié Dedzo, M., Nédélec, A., Nono, A., Njanko, T., Font, E., Kamgang, P., Njonfang, E. and Launeau, P., 2011. Magnetic fabrics of the Miocene ignimbrites from West-Cameroon: Implications for pyroclastic flow source and sedimentation. Journal of Volcanology and Geothermal Research 203, 113-132.
 
[3]  Kamgang, P., Njonfang, E., Chazot ,G. and Tchoua, F. M., 2007. Géochimie et géochronologie des laves felsiques des Mounts Bamenda (ligne volcanique du Cameroun). Comptes Rendus Géoscience 339, 659-666.
 
[4]  Nzenti, J. P., Kapajika, B., Wörner, G. and Lubala, R. T., 2006. Synkinematic emplacement of granitoids in a Pan-African shear zone in Central Cameroon. J. Afr. Earth Sci. 45, 74-86.
 
[5]  Nzenti J. P., Abaga B., Suh C. E. and Nzolang C., 2011. Petrogenesis of peraluminous magmas from the Akum-Bamenda Massif, Pan-African Fold Belt, Cameroon. International Geology Review 53, 1121-1149.
 
[6]  Kamgang, P., Chazot, G., Njonfang, E. and Tchoua, F. M., 2008. Geochemistry and geochronology of mafic rocks from Bamenda Mountains (Cameroon): Source composition and crustal contamination along the Cameroon Volcanic Line. Comptes Rendus Géoscience 340, 850-857.
 
[7]  Nzenti, J. P., Barbey, P., Bertrand, J. M. and Macaudière, J., 1994. La chaîne panafricaine au Cameroun : cherchons suture et modèle!” In: S. G. F. (ed.), 15ème Réunion des Sciences de la Terre, Nancy, France, pp. 99.
 
[8]  Ngnotué, T., Nzenti, J. P., Barbey, P. and Tchoua, F. M., 2000. The Ntui - Bétamba high-grade gneisses: a northward extension of the Pan- African Yaoundé gneisses in Cameroon. J. Afr. Earth Sci. 31, 369-381.
 
[9]  Castaing, C., Feybesse, J.L., Thiéblemont, D., Triboulet, C. and Chèvremont, P., 1994. Paleo geographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precambrian Research 69, 327-344.
 
[10]  Neves, S.P., Bruguier, O., Vauchez, A., Bosch, D., Silva, J.M.R., 2006. Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Research 149, 197-216.
 
[11]  Ganwa, A., Frisch, W., Siebel, W., Ekodeck, G.E., Cosmas, S. K. and Ngako, V., 2008. Archean inheritances in the pyroxene-amphibole-bearing gneiss of the Méiganga area (Central North Cameroon): Geochemical and 207Pb/206Pb age imprints. Comptes Rendus Geoscience 340, 211-222.
 
[12]  Djouka-Fonkwé, M. L., Schulz, B., Schüssler, U., Tchouankoué, J. P. and Nzolang, C., 2008. Geochemistry of the Bafoussam Pan-African I- and S- type granitoids in western Cameroon. J. Afr. Earth Sci. 50, 148-167.
 
[13]  Njiekak, G., Dörr, W., Tchouankoué, J. P. and Zulauf, G., 2008. U-Pb zircon and microfabric data of (meta) granitoids of western Cameroon: constraints on the timing of pluton emplacement and deformation in the Pan-African belt of Central Africa. Lithos 102, 460-477.
 
[14]  Kouankap Nono, G.D., Nzenti, J.P., Suh Cheo, E., Ganno, S., 2010. Geochemistry of ferriferous, high-K calc-alkaline magmas from the Banefo-Mvoutsaha Massif (NE Bafoussam), Central Domain of the Pan-African Fold Belt, Cameroon. The Open Geology Journal 4, 15-28.
 
[15]  Nzina Nchare, A., Nzenti, J.P., Tanko Njiosseu, E. L., Ganno, S. and Ngnotué, T., 2010. Synkinematic ferro-potassic magmatism from the Mekwene-Njimafofire Foumban Massif, along the Foumban-Banyo shear zone in central domain of Cameroon Pan-African fold belt. Journal of Geology and Mining Research 2(6), 142-158.
 
[16]  Chebeu, C., Ngo Nlend, C.D. Nzenti, J-P., Ganno, S., 2011. Neoproterozoic high-K calc-alkaline granitoids from Bapa-Batié, North Equatorial Fold Belt, Central Cameroon: petrogenesis and geodynamic significance. The Open Geology Journal 5, 1-20.
 
[17]  Middlemost, E. A. K., 1994. Naming material in the magma/igneous rock system. Earth-Science Review 37, 215-224.
 
[18]  Peccerillo, A. & Taylor, S. R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 58, 63-81.
 
[19]  Gills, J.B., 1981.Orogenic andesites and plates tectonics. Springer, Berlin.
 
[20]  Hine, R., Williams, I. S. and Chappell, B. W., 1978. Contrasts between I- and S-type granitoids of the Kosciusko bathlith. J. Geol. Soc. Australia 25 (3), 219-234.
 
[21]  Chappell, B. W. & White, A. J. R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 1-12.
 
[22]  Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J. and Frost, C. D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42, 2033-2048.
 
[23]  Bertrand, J. M., Dupuy, C., Dostal, J. and Davidson, I., 1984. Geochemistry and geotectonic interpretation of granitoids from Central Iforas (Mali, West Africa). Precambrian Research 26, 265-283.
 
[24]  Evensen, N. M., Hamilton, M. J. and O’Nions, R. J., 1978. Rare earth abundances in chondritic meteorites. Geochem. Cosmochim. Acta 42, 1199-1212.
 
[25]  Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M., 1986. Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters 79, 33-45.
 
[26]  Térakado, Y., & Masuda, A., 1988. Trace element variations in acidic rocks from the inner zone of southwest Japan. Chem. Geol., 67, 227-241.
 
[27]  Kwékam. M., Hartmann, G., Njanko, T., Tcheumenak K. J., Fozing E. M., Njonfang, E., 2015. Geochemical and Isotope Sr-Nd Character of Dschang Biotite Granite: Implications for the Pan-African Continental Crust Evolution in West-Cameroon (Central Africa). Earth Science Research; 4, (1); 88-102
 
[28]  Roberts, M. P. and Clemens, J. D., 1993. Origin of high-potassium, calcalkaline, I-type granitoids. Geology 21, 825-828.
 
[29]  Shang, C. K., Satir, M., Nsifa, E. N.,Liegeois, J. P., Siebel, W. and Taubald, H., 2007. Archaean high-K granitoids produced by remelting of earlier Tonalite–Trondhjemite–Granodiorite (TTG) in the Sangmelima region of the Ntem Complex of the Congo craton, southern Cameroon. International Journal Earth Sciences 96, 817-841.
 
[30]  Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N. and Vidal, P., 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134, 39-57.
 
[31]  Guillot, S. and Le Fort P., 1995. Geochemical constraints on the bimodal origin of high Himalayan leucogranites. Lithos, 35, 221-234.
 
[32]  Guo, Z., Wilson, M., 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research 22, 360–376.
 
[33]  Watson, E.B. and Green, T.H., 1982. Apatite liquid-partition coefficients for the rare earth elements and strontium. Earth Planet. Sci. Lett. 56, 405-421.
 
[34]  Watson, E.B. & Harrison, T.M., 1984. Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Physics of Earth and Planetary Interiors 35, 19-30.
 
[35]  Watson, E.B., 1987. The role of accessory minerals in granitoid geochemistry. In: Hutton Conference of the Origin of granites. Univ. Edinburgh, pp. 209-213.
 
[36]  Liégeois, J. P., Abdelsalam, M. G., Ennih, N., and Ouabadi, A., 2013. Metacraton: Nature, genesis and behavior: Gondwana Research, v. 23, p. 220-237.
 
[37]  Kwékam, M., Liégeois, J.P., Njonfang, E., Affaton, P., Hartmann, G., Tchoua, F., 2010. Nature, origin and significance of the Fomopéa Pan-African high-K calc-alkaline plutonic complex in the Central African fold belt (Cameroon). Journal African Sciences 54, 79–95.
 
[38]  Kwékam, M., Affaton, P., Bruguier, O., Liégeois, J.P., Hartmann, G.,Njonfang, E.,2013. ThePan-African Kekem gabbro-norite (West-Cameroon), U–Pb zircon age, geochemistry and Sr–Ndisotopes: Geodynamical implication for the evolution of the Central African fold belt. Journal African Sciences 84, 70–88.
 
[39]  Batchelor, R. A. & Bowden, P., 1985. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology 48, 43-55.
 
[40]  Altherr, F. F., Holl, A., Hegner, E., Langer, C. and Kreuzer, H., 2000. High-potassium, calc-alkaline I-type plutonism in the European variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50, 51-73.
 
[41]  Liégeois, J. P., Black, R., Navez, J. and Latouche, L., 1994. Early and late pan African orogenies in the Aïr assembly of terranes (Tuareg Shield, Niger).Precambrian Research 67, 59-88.
 
[42]  Liégeois, J.-P., Navez, J., Hertogen, J., Black, R., 1998. Contrasting origin of post collisional high-K calc-alkaline and shoshoniticversus alkaline and peralkalinegranitoids.The use of sliding normalization.Lithos 45, 1-28.