Journal of Geosciences and Geomatics. 2017, 5(6), 267-283
DOI: 10.12691/JGG-5-6-2
Original Research

New LA-ICP-MS U-Pb Ages, Lu-Hf Systematics and REE Characterization of Zircons from a Granitic Pluton in the Betare Oya Gold District, SE Cameroon

Kevin I. Ateh1, , Cheo E. Suh1, 2, Elisha M. Shemang3, A. Vishiti4, 2, Enerst Tata1 and Nelson N. Chombong1

1Economic Geology Unit, Department of Geology, University of Buea, P.O. Box 63 Buea, South West Region, Cameroon

2Department of Geology, Mining and Environmental Science, University of Bamenda, P.O. Box 39, Bamenda, North‐West Region, Cameroon

3Department of Earth and Environmental Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana

4Higher Institute of Science, Engineering and Technology, Cameroon Christian University Institute, P.O. Box 5, Bali, North West

Pub. Date: December 09, 2017

Cite this paper

Kevin I. Ateh, Cheo E. Suh, Elisha M. Shemang, A. Vishiti, Enerst Tata and Nelson N. Chombong. New LA-ICP-MS U-Pb Ages, Lu-Hf Systematics and REE Characterization of Zircons from a Granitic Pluton in the Betare Oya Gold District, SE Cameroon. Journal of Geosciences and Geomatics. 2017; 5(6):267-283. doi: 10.12691/JGG-5-6-2

Abstract

A combination of whole rock geochemistry, Ti-in-zircon thermometry, geochronology and Lu-Hf isotope composition of zircon is employed in this study to depict the source of a granitoid from the Bétaré Oya Gold District, its formation temperature, age of emplacement and evaluate the role of petrogenesis and magmatic evolution of the granitic melt in hydrothermal fluid circulation and primary gold precipitation. In this contribution, zircon grains from a granitic pluton were analyzed for their internal structures using cathodoluminescence imagery and dated by U-Pb technique using LA-ICP-MS. Based on the zircon internal structure, magmatic and metamorphic zircons are distinguished. The granitoid reveal a mean age of 635 Ma similar to those obtained from granitic intrusions along the Central African Shear Zone (CASZ) in Cameroon. This age defines a narrow Pan African emplacement age for the pluton and a unique melting event synchronous with magmatism and deformation. It also depicts a new and older mineralization along the CCSZ at 620-635 Ma for the Bétaré Oya Gold District, SE Cameroon. Ti-in-zircon thermometry indicates their emplacement at a modal temperature range between 625°C and 775°C. Based on whole rock geochemistry alongside trace and REE composition of zircon, the pluton shows a granodioritic to tonalitic affinity. The granitoid is sub alkaline with a high K calc-alkaline affinity, peraluminous and of I-type. REE in zircon patterns display high Ce concentrations, negative Eu anomalies, HREE enrichment, 176Lu/177Hf ratio < 0.022 and negative εHf values that range from -5.29 to -0.12. Positive εHf values suggest a mafic crustal contribution. Across the Atlantic into NE Brazil, mineralization is often associated to late Pan African event. We disclose an early mineralization event at 635-620Ma in the region.

Keywords

Granitoid, geochemistry, Ti-in-zircon thermometry, zircon chemistry, geochronology

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Pirajno, F., Hydrothermal processes and mineral systems. Springers science Business Media B.V, Dordrecht, 2009.
 
[2]  Gagnevin, D., Daly, J.S., Kronz, A., Zircon texture and chemical composition as a guide to magmatic processes and mixing in a granitic environment and coeval volcanic system. Contribution to Mineral Petrology 159, 579-596, 2010.
 
[3]  Belousova, E.A., Griffin W.L., O’reilly S.Y., Fisher N.I., Igneous zircon: trace element composition as an indicator of source rock type. Contribution to Mineral Petrology 143, 602-622, 2002.
 
[4]  Erdmann, S., Wodicka, N., Jackson, S.E., Corrigan, D., Zircon textures and composition: refractory recorders of magmatic volatile evolution? Contribution to Mineral Petrology 165, 45-71, 2013.
 
[5]  Matteini, M., Dantas, E.L., Pimentel, M.M., Bühn, B., Combined U-Pb and Lu-Hf isotope analyses by laser ablation MC-ICP-MS: methodology and applications. Anais da Academia Brasileira de Ciências, 82, 479-491, 2010.
 
[6]  Suh, C.E., Lehmann, B., Mafany, G.T., Geology and geochemical aspects of lode gold mineralization at Dimako-Mboscorro, SE Cameroon. Geochemistry: Exploration, Environment, Analysis, 6, 295-309, 2006.
 
[7]  Asaah, A.V., Zoheir B., Lehmann B., Burgess D.F.R., Suh E.C., Geochemistry and geochronology of the ~620 Ma gold-associated Batouri granitoids, Cameroon. International Geology Review, 2014.
 
[8]  Vishiti, A., Suh, C.E., Lehmann, B., Egbe, J.A., Shemang, E.M., Gold grade variation and particle microchemistry in exploration pits of the Batouri gold district, SE Cameroon. Journal of African Earth Sciences 111, 1-13, 2015.
 
[9]  Njongfang, E., Ngako, V., Moreau, C., Affaton, P., Diot, H., Restraining bends in high temperature shear zones: the “Central Cameroon Shear Zone”, Central Africa. Journal of African Earth Sciences, 52, 9-20, 2008.
 
[10]  Toteu, S.F., Van Schmus, W.R., Penaye, J., Michard, A., New U-Pb and Sm-Nd data from north central Cameroon and its bearing on the Pre-Pan-African his-tory of Central Africa. Precambrian Research, 108, 45-73, 2001.
 
[11]  Neves, S.P., Brugueir, O., Vauchez, A., Bosch, D., Silva, J.M.R., Mariano, G., Timing of crust formation, deposition of supracrustal sequences, and Transamazonian and Brasiliano metamorphism in the East Pernambuco belt (Borborema Province, NE Brazil): Implications for western Gondwana assembly. Precambrian Research, 149, 197-216, 2006.
 
[12]  Van Schmus, W.R., Oliveira, E.P., Da Silva Filho, A.F., Toteu, S.F., Penaye, J., Guimarães, I.P., The Central African Fold Belt Proterozoic Links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, London, Special Publications 294, 69-99, 2008.
 
[13]  Penaye, J., Krõner, A., Toteu, S.F., Van Schmus, W.R., Doumnang, J.C., Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (ca.740 Ma) Pan-African magmatic arc in southwestern Chad. Journal of African Earth Science 44, 530-542, 2006.
 
[14]  Bouyo, H.M., Toteu, S.F., Deloule, E., Penaye, J., Van Schmus, W.R., U-Pb and Sm-Nd dating of high-pressure granulites from Tcholliré and Banyo regions: evidence for a Pan-African granulite facies metamorphism in north-central Cameroon. Journal of African Earth Science, 54, 144-154, 2009.
 
[15]  Kwekam, M., Liégeois, J.P., Njonfang, E., Affaton, P., Hartmann, G., Tchoua, F., Nature, origin and significance of the Pan-African high-K calc-alkaline Fomopea plutonic complex in the Central African fold belt (Cameroon). Journal of African Earth Science 57, 79-95, 2010.
 
[16]  Mosoh Bambi,.C.K., Frimmel, H.E., Zeh, A., Suh, C.E., Age and origin of Pan-African granites and associated U-Mo minerali-zation at Ekomédion, southwestern Cameroon. Journal of African Earth Sciences 88, 15-37, 2013.
 
[17]  Ngnotue, T., Ganno, S., Nzenti, J.P., Schulz, B., Tchaptchet, T.D., Suh, C.E., Geochemistry and Geochronology of Peraluminous High-K Granitic Leucosomes of Yaoundé Series (Cameroon): Evidence for a unique Pan-African Magmatism and Melting Event in North Equatorial Fold Belt. International Journal of Geosciences, 3, 525-548, 2012.
 
[18]  Bouyo, H.M., Penaye, J., Njel, U.O., Moussango, A.P.I., Sep J.P.N., Nyama, B. A., Wassouo, W.J.J., Abaté, M.E., Yaya, F., Mahamat, A., Hao, Ye, Fei Wu, Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: Implications for tectonomagmatic evolution. Journal of African Earth Sciences 116, 9-41, 2016.
 
[19]  Ngako, V., Affaton, P., Nnange, J.M., And Njanko, T.H., Pan-African tectonic evolution in central and southern Cameroon: Transpression and transtension during sinistral shear movements; Journal of African Earth Science 36, 207-214, 2003.
 
[20]  Kankeu, B., Greiling, R.O., Nzenti, J.P., Bassahak, J., Hell, V.J., Strain partitioning along the Neoproterozoic central Africa shear zone system: Structures and magnetic fabrics (AMS) from the Meiganga area, Cameroon;Neues Jahrbuch für Paläontologie - Abhand-lungen 265,27-47, 2012.
 
[21]  Dane, A., “Lom River Property: Geological Report,” Bridge Consulting, 86, 1998.
 
[22]  Soba, D., “La Série de Lom: Étude Géologique et Géochronologique du Bassin Vocano-Sédimentaire de la Chaine Panafricaîne à l’Est du Cameroun,” Thèse de doctoral d’Etat, Université Pierre et Marie Curie, Paris, 1989.
 
[23]  Kylander-Clark, R.C.A., Bradley, R., Hacker, Cottle, J.M., Laser-ablation split-stream ICP petrochronology. Chemical Geology 345, 99-112, 2013.
 
[24]  Mckinney, S.T., Cottle, J.M., And Lederer, G.W., Evaluating rare earth element (REE) mineralization mechanisms in Proterozoic gneiss. Music valley,California, Geological Society of America Bulletin, B31165, 1, 2015.
 
[25]  Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A. And Maas, R., Improve laser ablation U-Pb zircon geochronology through roburst downhole fractionation correction. Geochemistry Geophysics geosystems 11, 1525-2027, 2010.
 
[26]  Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J.C., Spiegel, W., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandard Newsletters, 19, 1-23, 1995.
 
[27]  Horstwood, M., Kosler, J., Gehrels G., Jackson, S.,E., McLean N.,M., Paton, C., Pearson, N.,J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J., F., Condon, D.,J., Schoene, B., Community derived standards for LA-ICP-MS U-Th-Pb Geochronology - Uncertainty propagation, Age interpretation and reporting; Geostandards and Geoanalytical research, 40, 311-332, 2016.
 
[28]  Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., Chen, H., Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55, 1535-1546, 2010.
 
[29]  Bowring, J.F., Mclean, N.M., Bowring, S.A., Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb Redux. Geochemistry Geophysics Geosystems 12: 2011.
 
[30]  Hagen-Peter, G., Cottle, J.M., Tulloch, J.A., Cox, S.C., Mixing between enriched lithospheric mantle and crustal components in a short-lived subduction-related magma system, Dry Valleys area, Antarctica: Insights from U-Pb geochronology, Hf isotopes, and whole-rock geochemistry. Lithosphere 7 (2), 174-188, 2015.
 
[31]  Scherer, E., Münker, C., Mezger, K., Calibration of the lutetium-hafnium clock. Science 293, 683-686, 2001.
 
[32]  Söderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E., The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planetary Science Letter, 219, 311-324, 2004.
 
[33]  Bouvier, A., Vervoort, J.D., Patchett P.J.,The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planetary Science Letter, 273, 48-57, 2008.
 
[34]  Ferry, J. M., Watson, E. B., New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometersContributions to Mineralogy & Petrology, 154, 429-437, 2007.
 
[35]  MacDonald, G.A., and Katsura, T., Chemical composition of Hawaiian lavas1: Journal of Petrology, 5, 82-133, 1964.
 
[36]  Rickwood, P.C., Boundary lines within petrologic diagrams which use oxides of major and minor elements: Lithosphere, 22, 247-263, 1989.
 
[37]  Peccerillo, A., and Taylor, S.R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey: Contributions to Mineralogy and Petrology, 58, 63-81, 1976.
 
[38]  Maniar, P.D., and Piccoli, P.M., Tectonic discrimination of granitoids: Geological Society of America Bulletin, 101, 635-643, 1989.
 
[39]  Pearce, J.A., Harris, N.B.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, 25, 956-983, 1984.
 
[40]  Yuanbao, W., U. and Yongfei, Z., Genesis of zircon and its constraints on interpretation of U-Pb age Chinese Science Bulletin, 49, 1554-1569, 2004.
 
[41]  Muňoz, M., Charrier, R., Fanning, C.M., Maksaev, V., Deckart, K., ZirconTrace Element and O-Hf IsotopeAnalyses of Mineralized Intrusions from El Teniente Ore Deposit, Chilean Andes: Constraints on the Source and Magmatic Evolution of Porphyry Cu-Mo Related Magmas. Journal of Petrology 1-32, 2012.
 
[42]  Castiñeiras, P., Navidad, M., Casas, J.M., Liesa, M., Carreras, J., Petrogenesis of Ordovician Magmatism in the Pyrenees (Albera and Canigó Massifs) Determined on the Basis of Zircon Minor and Trace Element Composition. Journal of Geology, 119, 521-534, 2011.
 
[43]  Chappell, B.W., and White, A.J.R., Two contrasting granite types Pacific Geology 8, 173-174, 1974.
 
[44]  Belousova, E.A., Griffin, W.L., O’reill, Y.S., Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47, 329-353, 2006.
 
[45]  Ji, W.Q., Wu F.Y., Chung, S.L., Li J.X., Liu, C.Z., Zircon U-Pb geochronological and Hf isotopic constraints on petrogenesis of the Ganddese batholith, southern Tibet. Chemical Geology, 262, 229-245, 2009.
 
[46]  Toteu, S.F., Michard, A., Bertrand, J.M., Rocci, G., U-Pb dating of Precambrian rocks from northern Cameroon, orogenic evolution and chronology of the Pan-African belt of central Africa. Precambrian Research, 37, 71-87, 1987.
 
[47]  Tagne-Kamga, G., Petrogenesis of the Neoproterozoic Ngondo Plutonic complex (Cameroon, west central Africa): a case of late-collisional ferropotassic magmatism. Journal of African Earth Science, 36, 149-171, 2003.
 
[48]  Maibam, B., Gerdes, A., Goswami, J., N., U-Pb and Hf isotope records in detrital and magmatic zircon from eastern and western Dharwar craton, southern India: Evidence for coeval Archaean crustal evolution. Precambian Research, 275, 496-512, 2016.