Journal of Geosciences and Geomatics. 2017, 5(5), 218-228
DOI: 10.12691/JGG-5-5-1
Original Research

Geochemical Characterization of a Stratigraphic Log Bearing Iron Ore in the Sanaga Prospect, Upper Nyong Unit of Ntem Complex, Cameroon

Ilouga D. C. I.1, , Ndong Bidzang F.2, Ziem A Bidias L. A.1, 3, Olinga J. B.2, Tata E.4 and Minyem D.3

1Geology Laboratory, Higher Teacher Training College, University of Yaounde I de Yaoundé I, Yaoundé, Cameroun

2Ore Processing Laboratory, IRGM, Yaounde, Cameroon

3Department of Earths Sciences, University of Yaounde I, Yaounde, Cameroon

4Department of Geology, University of Buea, South West Region, Buea, Cameroo

Pub. Date: September 19, 2017

Cite this paper

Ilouga D. C. I., Ndong Bidzang F., Ziem A Bidias L. A., Olinga J. B., Tata E. and Minyem D.. Geochemical Characterization of a Stratigraphic Log Bearing Iron Ore in the Sanaga Prospect, Upper Nyong Unit of Ntem Complex, Cameroon. Journal of Geosciences and Geomatics. 2017; 5(5):218-228. doi: 10.12691/JGG-5-5-1

Abstract

The Sanaga prospect in the north of Edea is located in the upper Nyong unit of the Ntem complex in Cameroon. The objective of this study is to use geochemical data trends for major and some trace elements to constrain the origin and/or sources of various constituents in the iron-bearing units as well as assess their economic potentials. The rock samples were collected from a single drill core sampled at various depths. Major elements were analysed using X-ray fluorescence spectrometry after powder digestion following. All data were processed with the aid of XLSTAT. The stratigraphic log described revealed from top to bottom two lithological sequences composed of oxidized formations (oxidized cap and oxidized gneiss), and gneissic formations (magnetite gneiss, magnetite amphibolite gneiss and enriched magnetite amphibolite gneiss successions). Detailed examination showed that quartz and iron oxides are the main minerals present. Bulk geochemical analysis of the oxidized and gneissic formations showed that Fe2O3 and SiO2 are the main constituents (averaging 84.40 wt % and 92.54 wt %, respectively), confirming that quartz and iron oxides are the major mineral phases in both the oxidised and gneissic formations. Al2O3 averages 9.34 wt % and 3.06 wt %, Na2O averages 0.04 wt % and 0.59 wt %, K2O averages 0.26 and 0.53 wt %, and P2O5 0.07 and 0.05 wt %, respectively, in both oxidized and gneissic formations. Concentrations of trace elements in the various lithologies are generally very low (< 100 ppm). Certain correlations of interest in both units include Al2O3 with LOI (r > 0.8), and Zr (r > 0.7); LOI with Zr (r > 0.8). From these data it appears that mineralisation at the Sanaga prospect is restricted to the magnetite gneiss. The high concentration of Al2O3 (average 9.34 wt %) in the oxidized iron formations is partially due to its introduction during recent chemical weathering. The Sanaga iron formations are metamorphosed chemical sediments formed by precipitation of iron and silica from a mixture of seawater and hydrothermal fluids with a significant terrigenous input.

Keywords

upper Nyong, Sanaga, stratigraphic log, magnetite gneiss, hydrothermal

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Teutsong T., Bontognali T. R. R., Ndjigui P-D., Vrijmoed J. C., Teagle D., Cooper M., Vance D., Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: Implications for its origin, Ore. Geol. Rev. 80, 267-288, 2017.
 
[2]  Teutsong T., Bontognali T. R. R., Ndjigui P-D., Vrijmoed J. C., Teagle D., Cooper M., Vance D., Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: Implications for its origin, Ore. Geol. Rev. 80, 267-288, 2017.
 
[3]  Ndong B.F., Sobdjou K.C., Yannah M., Ntomba M. S., Nzenti J. P., Mvondo O. J., Origin and tectonic framework of the Ngovayang Iron Massifs, southern Cameroon. Sci. Res. 4, 11-20, 2016.
 
[4]  Ndong B.F., Sobdjou K.C., Yannah M., Ntomba M. S., Nzenti J. P., Mvondo O. J., Origin and tectonic framework of the Ngovayang Iron Massifs, southern Cameroon. Sci. Res. 4, 11-20, 2016.
 
[5]  Ganno, S., Ngnotue, T., Kouankap, N.G.D., Nzenti, J.P., Notsa, F.M., Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: implications for the origin and depositional environment. Chem. Erde 75, 3, 75-387, 2015a.
 
[6]  Ganno, S., Ngnotue, T., Kouankap, N.G.D., Nzenti, J.P., Notsa, F.M., Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: implications for the origin and depositional environment. Chem. Erde 75, 3, 75-387, 2015a.
 
[7]  Ganno, S., Moudioh, C., Nzina Nchare, A., Kouankap Nono, G.D., Nzenti, J.P., Geochemical fingerprint and iron or epotential of the siliceous itabirite from Palaeoproterozoic Nyong series, Zambi area, Southwestern Cameroon. Res. Geol. 66 (1), 71-80, 2015b.
 
[8]  Ganno, S., Moudioh, C., Nzina Nchare, A., Kouankap Nono, G.D., Nzenti, J.P., Geochemical fingerprint and iron or epotential of the siliceous itabirite from Palaeoproterozoic Nyong series, Zambi area, Southwestern Cameroon. Res. Geol. 66 (1), 71-80, 2015b.
 
[9]  Ganno S, Njiosseu T.E.L., Kouankap Nono G.D., Djoukouo S.A., Moudioh C., Ngnotue T., Nzenti, J.P., A mixed seawater ad hydrothermal origin of the superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrology and geochemistry, Ore. Geo. Rev. 80, 860-875, 2016.
 
[10]  Ganno S, Njiosseu T.E.L., Kouankap Nono G.D., Djoukouo S.A., Moudioh C., Ngnotue T., Nzenti, J.P., A mixed seawater ad hydrothermal origin of the superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrology and geochemistry, Ore. Geo. Rev. 80, 860-875, 2016.
 
[11]  Ilouga D.C.I., Suh, C.E., Ghogomu R.T., Textures and rare earth elements composition of banded iron formations (BIF) at Njweng prospect, Mbalam Iron Ore District, Southern Cameroon. Int. Jour. Geo., 4, 146-165, 2013.
 
[12]  Ilouga D.C.I., Suh, C.E., Ghogomu R.T., Textures and rare earth elements composition of banded iron formations (BIF) at Njweng prospect, Mbalam Iron Ore District, Southern Cameroon. Int. Jour. Geo., 4, 146-165, 2013.
 
[13]  Kock M.O., Evans A.D., Gutzmer J., Beukes J., Dorland H. C., Origin and timing of banded iron formation-hosted high-grade hard hematite Deposits- A paleomagnetic approach. Econ. Geol. Rev., 15, 49-71, 2008.
 
[14]  Kock M.O., Evans A.D., Gutzmer J., Beukes J., Dorland H. C., Origin and timing of banded iron formation-hosted high-grade hard hematite Deposits- A paleomagnetic approach. Econ. Geol. Rev., 15, 49-71, 2008.
 
[15]  Mukhobaday J., Gtzmer J., Beukes N.J., Bhattacharya H. N., Geology and genesis of the major banded iron formation-hosted high-grade iron ore deposits of India, Econ. Geol. Rev. 15, 291-315, 2008.
 
[16]  Mukhobaday J., Gtzmer J., Beukes N.J., Bhattacharya H. N., Geology and genesis of the major banded iron formation-hosted high-grade iron ore deposits of India, Econ. Geol. Rev. 15, 291-315, 2008.
 
[17]  Beukes, N.J., Gutzmer, J., Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoprotorozoic boundary, Econ. Geol. Rev., 15, 5-47, 2008.
 
[18]  Beukes, N.J., Gutzmer, J., Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoprotorozoic boundary, Econ. Geol. Rev., 15, 5-47, 2008.
 
[19]  Gutzmer, J., Beukes, N.J., de Kock, M. O., and Netshiozwi, S. T., Origin of high-grade iron ores at the Thabazimbi deposit, South Africa: Iron Ore Conference, Fremantle, 19–21 September 2005, Proceedings, 57-65, 2005.
 
[20]  Gutzmer, J., Beukes, N.J., de Kock, M. O., and Netshiozwi, S. T., Origin of high-grade iron ores at the Thabazimbi deposit, South Africa: Iron Ore Conference, Fremantle, 19-21 September 2005, Proceedings, 57-65, 2005.
 
[21]  Bau, M., and Dulski, P., Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precamb. Res., 79, 37-55, 1996.
 
[22]  Bau, M., and Dulski, P., Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precamb. Res., 79, 37-55, 1996.
 
[23]  Klein, C., and Beukes, N. J., Time distribution, stratigraphy, and sedimentologic setting, and geochemistry of Precambrian iron-formations. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: University of Cambridge, 139-146, 1992.
 
[24]  Klein, C., and Beukes, N. J., Time distribution, stratigraphy, and sedimentologic setting, and geochemistry of Precambrian iron-formations. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: University of Cambridge, 139-146, 1992.
 
[25]  Pearce, J.A., Gale, G.H., Identification of ore- deposition environment from trace-element geochemistry of associated igneous host rocks. Geol. Soc. Lon., special publications 7, 14-24, 1977.
 
[26]  Pearce, J.A., Gale, G.H., Identification of ore- deposition environment from trace-element geochemistry of associated igneous host rocks. Geol. Soc. Lon., special publications 7, 14-24, 1977.
 
[27]  Graf J.L., “Rare Earth Elements as Hydrothermal Tracers during the Formation of Massive Sulfide Deposits in Volcanic Rocks,” Econ. Geol. Vol. 72, No. 4, 527-548, 1977.
 
[28]  Graf J.L., “Rare Earth Elements as Hydrothermal Tracers during the Formation of Massive Sulfide Deposits in Volcanic Rocks,” Econ. Geol. Vol. 72, No. 4, 527-548, 1977.
 
[29]  Chen, J., Walter, M.R., Logan, G.A., Hinman, M .C., Summons, R. E., The paleoproterozoic Mcarthur River (HYC) Pb-Zn-Ag deposit of northen Ausralia, organic geochemistry and ore genesis. Earth and plan. science Let. 210, 2003, 467-479.
 
[30]  Chen, J., Walter, M.R., Logan, G.A., Hinman, M .C., Summons, R. E., The paleoproterozoic Mcarthur River (HYC) Pb-Zn-Ag deposit of northen Ausralia, organic geochemistry and ore genesis. Earth and plan. science Let. 210, 2003, 467-479.
 
[31]  Landis, G.P., Rye, R.O., Characterzation of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-stream alunite, Chem. Geol, 215, 155-184, 2005.
 
[32]  Landis, G.P., Rye, R.O., Characterzation of gas chemistry and noble-gas isotope ratios of inclusion fluids in magmatic-hydrothermal and magmatic-stream alunite, Chem. Geol, 215, 155-184, 2005.
 
[33]  Spier, C.A., Oliveira, S.M.B., Sial, A.N., Rios, F.J., Geochemistry and genesis of banded iron formations of the Cauê Formation, quadrilátero Ferrifero, Minas Gerais, Brazil. Precamb. Res., 152, 170-206, 2007.
 
[34]  Spier, C.A., Oliveira, S.M.B., Sial, A.N., Rios, F.J., Geochemistry and genesis of banded iron formations of the Cauê Formation, quadrilátero Ferrifero, Minas Gerais, Brazil. Precamb. Res., 152, 170-206, 2007.
 
[35]  Viehmann S, Bau M, Smith AJB, Beukes NJ, Dantas EL, Bühn, B., The reliability of ~2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematic. J. Afr Earth Sci 111, 322-334, 2015.
 
[36]  Viehmann S, Bau M, Smith AJB, Beukes NJ, Dantas EL, Bühn, B., The reliability of ~2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematic. J. Afr Earth Sci 111, 322-334, 2015.
 
[37]  Davy R., A contribution on the chemical composition of Precambrian iron-formations, in Iron formation: Facts and problems (Eds: A. F. Trendall and Morris) Developments in Precambrian Geology 6, Elsevier, 211-251 1983.
 
[38]  Davy R., A contribution on the chemical composition of Precambrian iron-formations, in Iron formation: Facts and problems (Eds: A. F. Trendall and Morris) Developments in Precambrian Geology 6, Elsevier, 211-251 1983.
 
[39]  Toteu S.F., Van Schmus W.R., Penaye J., Nyobé J.B., U-Pb and Sm-Nd evidence for Eburnean and Pan-African highgrade metamorphism in cratonic rocks of southern Cameroon, Precamb. Res. 67, 321-347, 1994.
 
[40]  Toteu S.F., Van Schmus W.R., Penaye J., Nyobé J.B., U-Pb and Sm-Nd evidence for Eburnean and Pan-African highgrade metamorphism in cratonic rocks of southern Cameroon, Precamb. Res. 67, 321-347, 1994.
 
[41]  Lerouge C, Cocherie A, Toteu S.F., Penaye J., Milési J.P., Tchameni R., Nsifa E.N., Fanning C.M., Doloule E., Shrimps U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, SouthWestern Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sci. 44, 413-427, 2006.
 
[42]  Lerouge C, Cocherie A, Toteu S.F., Penaye J., Milési J.P., Tchameni R., Nsifa E.N., Fanning C.M., Doloule E., Shrimps U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, SouthWestern Cameroon: consequences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. J Afr Earth Sci. 44, 413-427, 2006.
 
[43]  Shang C.K., Satir M., Siebel W., Nsifa E.N., Taubald H., Liegeois J.P., Tchoua F.M., TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb–Sr and Sm–Nd systematics of TTG magmatism in the Congo craton: case of the Sangmelima region, Ntem complex, southern Cameroon. J Afr Earth Sci 40: 61-79, 2004a.
 
[44]  Shang C.K., Satir M., Siebel W., Nsifa E.N., Taubald H., Liegeois J.P., Tchoua F.M., TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb-Sr and Sm-Nd systematics of TTG magmatism in the Congo craton: case of the Sangmelima region, Ntem complex, southern Cameroon. J Afr Earth Sci 40: 61-79, 2004a.
 
[45]  Shang C.K., Satir M., Nsifa E.N., Liegeois J.P., Siebel W., Taubald H., Archaean highK granitoids produced by remelting of the earlier Tonalite-Trondhjemite-Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. Int J Earth Sci 96: 817-842, 2007.
 
[46]  Shang C.K., Satir M., Nsifa E.N., Liegeois J.P., Siebel W., Taubald H., Archaean highK granitoids produced by remelting of the earlier Tonalite–Trondhjemite–Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. Int J Earth Sci 96: 817-842, 2007.
 
[47]  Ebah Abeng, S.A.E., Ndjigui, P.D., Beyanu, A.A., Teutsong, T., Bilong. P., Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo Craton): Implications for Au-PGE exploration. Journal of Geochem. Expl, 114, 1-19, 2012.
 
[48]  Ebah Abeng, S.A.E., Ndjigui, P.D., Beyanu, A.A., Teutsong, T., Bilong. P., Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo Craton): Implications for Au-PGE exploration. Journal of Geochem. Expl, 114, 1-19, 2012.
 
[49]  Chombong N.N., Suh C.E., 2883 ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics. Episodes. 36: 47-57, 2013.
 
[50]  Chombong N.N., Suh C.E., 2883 Ma commencement of BIF deposition at the northern edge of Congo craton, southern Cameroon: new zircon SHRIMP data constraint from metavolcanics. Episodes. 36:47-57, 2013.
 
[51]  Nédélec A., Minyem D., Barbey P., High P-High T anatexis of Archean tonalitic grey gneisses: Eséka migmatites, Cameroun. Precambr Res. 62:191-205, 1993.
 
[52]  Nédélec A., Minyem D., Barbey P., High P-High T anatexis of Archean tonalitic grey gneisses: Eséka migmatites, Cameroun. Precambr Res. 62: 191-205, 1993.
 
[53]  Chombong N.N., Suh C.E., Lehmann B., Vishiti A., Ilouga D.C., Shemang E.M., Tantoh B.S., and Kedia A.C. Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon, Applied Earth Science, 17 p., 2017.
 
[54]  Chombong N.N., Suh C.E., Lehmann B., Vishiti A., Ilouga D.C., Shemang E.M., Tantoh B.S., and Kedia A.C. Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon, Appl. Earth Sci., 17 p., 2017.
 
[55]  Murray, R.W., Jpnes, D.L., Buchholtz, T.B., Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couplet. Geophys. J. R. Astron. Soc. 20, 271-274, 1992.
 
[56]  Murray, R.W., Jpnes, D.L., Buchholtz, T.B., Diagenetic formation of bedded chert: evidence from chemistry of the chert-shale couplet. Geophys. J. R. Astron. Soc. 20, 271-274, 1992.
 
[57]  Beukes, N.J., Klein, C., Geochemistry and sedimentology of a facies transition - from microbanded to granular iron-formation - in the early Proterozoic Transvaal Supergroup, South Africa, Precamb. Res. 47, 99-139, 1990.
 
[58]  Beukes, N.J., Klein, C., Geochemistry and sedimentology of a facies transition – from microbanded to granular iron-formation – in the early Proterozoic Transvaal Supergroup, South Africa, Precamb. Res. 47, 99-139, 1990.
 
[59]  Horstmann, U.E., Halbich, I.W., Chemical composition of ¨ banded iron-formations of the Griqualand West Sequence, Northern Cape Province, South Africa, in comparison with other Precambrian iron formations. Precamb. Res. 72, 109-145, 1995.
 
[60]  Horstmann, U.E., Halbich, I.W., Chemical composition of ¨ banded iron-formations of the Griqualand West Sequence, Northern Cape Province, South Africa, in comparison with other Precambrian iron formations. Precamb. Res. 72, 109-145, 1995.
 
[61]  Riddley, M., Evidence for the hydrothermal origin of iron ore, Southern Ridge, Mont Tom Price, Western Australia: Unpublished B.Sc. Thesis, Nedlands, University of Western Australia, 93 p., 1999.
 
[62]  Riddley, M., Evidence for the hydrothermal origin of iron ore, Southern Ridge, Mont Tom Price, Western Australia: Unpublished B.Sc. Thesis, Nedlands, University of Western Australia, 93 p., 1999.
 
[63]  Webb A., Dickens G., and Oliver N.H.S., From banded iron-formation to iron ore: Geochemical and mineralogical constraints from across the Hamersley Province, Western Australia; Chem. Geol. 197 215-251, 2003.
 
[64]  Webb A., Dickens G., and Oliver N.H.S., From banded iron-formation to iron ore: Geochemical and mineralogical constraints from across the Hamersley Province, Western Australia; Chem. Geol. 197 215-251, 2003.
 
[65]  Hatton, O., Davidson, G., Soldiers Cap Group iron-formations, Mt. Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Australian J. Earth Sci. 51, 85-106, 2004.
 
[66]  Hatton, O., Davidson, G., Soldiers Cap Group iron-formations, Mt. Isa Inlier, Australia, as windows into the hydrothermal evolution of a base-metal-bearing Proterozoic rift basin. Australian J. Earth Sci. 51, 85-106, 2004.
 
[67]  Lan, T.G., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Liu, Y.S., U–Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol. Rev. 56, 472-486, 2014.
 
[68]  Lan, T.G., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., Liu, Y.S., U-Pb zircon chronology, geochemistry and isotopes of the Changyi banded iron formation in the eastern Shandong Province: constraints on BIF genesis and implications for Paleoproterozoic tectonic evolution of the North China Craton. Ore Geol. Rev. 56, 472-486, 2014.
 
[69]  Harder, H., Können Eisensäuerlinge die Genese der Lahn-Dill-Erze erklären: Beiträge zur Mineralogie und Petrographie, v. 9, p. 379-422, 1964.
 
[70]  Harder, H., Können Eisensäuerlinge die Genese der Lahn-Dill-Erze erklären: Beiträge zur Mineralogie und Petrographie, v. 9, p. 379-422, 1964.
 
[71]  Hirst, D.M., The geochemistry of modern sediments from the Golf of Paria, 2. The location and distribution of trace elements. Geochim. Cosmochim. Acta, 26:1147-1187, 1962.
 
[72]  Hirst, D.M., The geochemistry of modern sediments from the Golf of Paria, 2. The location and distribution of trace elements. Geochim. Cosmochim. Acta, 26:1147-1187, 1962.
 
[73]  Kimberley, M.M., Exhalative origins of iron formations. Ore Geol. Rev. 5, 13-145, 1989.
 
[74]  Kimberley, M.M., Exhalative origins of iron formations. Ore Geol. Rev. 5, 13-145, 1989.
 
[75]  Klein, C., Beukes, N.J., Geochemistry and sedimentary of a facies transition from limestone to iron formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa, Econ. Geol. 84, 1733-1774, 1989.
 
[76]  Klein, C., Beukes, N.J., Geochemistry and sedimentary of a facies transition from limestone to iron formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa, Econ. Geol. 84, 1733-1774, 1989.
 
[77]  Isley, A.E., Hydrothermal plumes and the delivery of iron to banded iron formation. J. Geol. 103, 169-185, 1995.
 
[78]  Isley, A.E., Hydrothermal plumes and the delivery of iron to banded iron formation. J. Geol. 103, 169-185, 1995.
 
[79]  Lascelles, D.F., Black smokers and the Archean environment: uniformitarian model for the genesis of iron-formations. Ore Geol. Rev. 32, 381-411, 2007.
 
[80]  Lascelles, D.F., Black smokers and the Archean environment: uniformitarian model for the genesis of iron-formations. Ore Geol. Rev. 32, 381-411, 2007.
 
[81]  Dymek, R.F., Klein, C., Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt West Greenland. Precamb. Res. 39, 247-302, 1988.
 
[82]  Dymek, R.F., Klein, C., Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua supracrustal belt West Greenland. Precamb. Res. 39, 247-302, 1988.
 
[83]  Shimizu, H., Umemotto, N., Masuda, A., Appel, P.W.U., Sources of iron-formations in the Archean Isua and Malene supracrustals West Greenland: evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochim. Cosmochim. Acta 54, 1147-1154, 1990.
 
[84]  Shimizu, H., Umemotto, N., Masuda, A., Appel, P.W.U., Sources of iron-formations in the Archean Isua and Malene supracrustals West Greenland: evidence from La-Ce and Sm-Nd isotopic data and REE abundances. Geochim. Cosmochim. Acta 54, 1147-1154, 1990.
 
[85]  Bau, M., Möller, P., Rare earth element systematics of the chemically precipitated component in Early Precambrian iron-formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochim. Cosmochim. Acta 57, 2239-2249, 1993.
 
[86]  Bau, M., Möller, P., Rare earth element systematics of the chemically precipitated component in Early Precambrian iron-formations and the evolution of the terrestrial atmosphere–hydrosphere–lithosphere system. Geochim. Cosmochim. Acta 57, 2239-2249, 1993.
 
[87]  Holland, H.D., The Chemical Evolution of the Atmosphere and the Oceans. Princeton University Press, Princeton, 582 pp., 1984.
 
[88]  Holland, H.D., The Chemical Evolution of the Atmosphere and the Oceans. Princeton University Press, Princeton, 582 pp., 1984.
 
[89]  Manikyamba, C., Balaram, V., Naqvi, S.M., Geochemical signatures of polygenetic origin of the banded iron formation (BIF) of Archean Sandur greenstone belt (schist belt), Karnataka nucleus, India, Precamb. Res. 61, 137-164, 1993.
 
[90]  Manikyamba, C., Balaram, V., Naqvi, S.M., Geochemical signatures of polygenetic origin of the banded iron formation (BIF) of Archean Sandur greenstone belt (schist belt), Karnataka nucleus, India, Precamb. Res. 61, 137-164, 1993.
 
[91]  Kholodov, V.N., Butuzova, G.Y., Problems of iron and phosphorus geochemistry in the Precambrian. Lithol. Miner. Resour. 36 (4), 291-302, 2001.
 
[92]  Kholodov, V.N., Butuzova, G.Y., Problems of iron and phosphorus geochemistry in the Precambrian. Lithol. Miner. Resour. 36 (4), 291-302, 2001.
 
[93]  Bonatti, E., Metallogenesis at oceanic spreading centers. Annu. Rev. Earth and Planet. Sci. 3, 401-433, 1975.
 
[94]  Bonatti, E., Metallogenesis at oceanic spreading centers. Annu. Rev. Earth and Planet. Sci. 3, 401-433, 1975.
 
[95]  Marchig, V., Gundlach, H., Möller, P., Schley, F., Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Mar. Geol. 50, 241-256, 1982.
 
[96]  Marchig, V., Gundlach, H., Möller, P., Schley, F., Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Mar. Geol. 50, 241-256, 1982.
 
[97]  Barrett, T.J., Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appenines, Italy. Chem. Geol. 34, 289-317, 1981.
 
[98]  Barrett, T.J., Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Appenines, Italy. Chem. Geol. 34, 289-317, 1981.
 
[99]  Dasgupta, H.C., Sambasiva Rao, V.V., Krishna, C., Chemical environments of deposition of ancient iron- and manganese-rich sediments and cherts. Sediment. Geol. 125, 83-9, 1999.
 
[100]  Dasgupta, H.C., Sambasiva Rao, V.V., Krishna, C., Chemical environments of deposition of ancient iron- and manganese-rich sediments and cherts. Sediment. Geol. 125, 83-9, 1999.
 
[101]  Toth, J.R., Deposition of submarine crusts rich in manganese and iron. Geo. Soc. Am. Bull. 91 (1), 44-54, 1980.
 
[102]  Toth, J.R., Deposition of submarine crusts rich in manganese and iron. Geo. Soc. Am. Bull. 91 (1), 44-54, 1980.
 
[103]  Miller, J.R., Les impuretés des minerais de fer : les ressources mondiales en minerai de fer. Inventaire et évaluation. Rapport d’un groupe d’experts nommés par le S.G., Département des affaires économiques et sociales, 447 p, 1972.
 
[104]  Miller, J.R., Les impuretés des minerais de fer : les ressources mondiales en minerai de fer. Inventaire et évaluation. Rapport d’un groupe d’experts nommés par le S.G., Département des affaires économiques et sociales, 447 p, 1972.
 
[105]  Ramanaidou, E., Wells, M., Belton, D., Verall, M., Ryan, C., Mineralogical and microchemical methods for the characterization of high-grade iron formation -derived iron ore: Econ Geol Rev, 15, 129-156, 2008.
 
[106]  Ramanaidou, E., Wells, M., Belton, D., Verall, M., Ryan, C., Mineralogical and microchemical methods for the characterization of high-grade iron formation –derived iron ore: Econ Geol Rev, 15, 129- 156, 2008.
 
[107]  Belevtsev, Ya.N., Kravchenko, V.M., Kulik, D.A., Belevtsev, R.Ya., Borisenko, V.G., Drozdovskaya, A.A., Epatko, Yu.M., Zankevich, B.A., Kalinichenko, O.A., Koval, V.B., Korzhnev, M.N., Kusheyev, V.V., Lazurenko, V.I., Litvinskaya, M.A., Nikolayenko, V.I., Pirogov, B.I., Prozhogin, L.G., Pikovskiy, E.Sh., Samsonov, V.A., Skvortsov, V.V., Savchenko, L.T., Stebnovskaya, Yu.M., Tereshchenko, S.I., Chaykin, S.I. and Yaroshchuk, M.A., Precambrian banded iron formations of the European part of the USSR. Genesis of Iron-ores. Naukova Dumka Press, Kiev (IGCP UNESCO Project, No 247 (in Russian)), 1991.
 
[108]  Belevtsev, Ya.N., Kravchenko, V.M., Kulik, D.A., Belevtsev, R.Ya., Borisenko, V.G., Drozdovskaya, A.A., Epatko, Yu.M., Zankevich, B.A., Kalinichenko, O.A., Koval, V.B., Korzhnev, M.N., Kusheyev, V.V., Lazurenko, V.I., Litvinskaya, M.A., Nikolayenko, V.I., Pirogov, B.I., Prozhogin, L.G., Pikovskiy, E.Sh., Samsonov, V.A., Skvortsov, V.V., Savchenko, L.T., Stebnovskaya, Yu.M., Tereshchenko, S.I., Chaykin, S.I. and Yaroshchuk, M.A., Precambrian banded iron formations of the European part of the USSR. Genesis of Iron-ores. Naukova Dumka Press, Kiev (IGCP UNESCO Project, No 247 (in Russian)), (1991).
 
[109]  Dub, V.S., Dub, A.V., and Makarycheva, E.V., Role of impurity and process elements in the formation of structure and properties of the structural steel, Metal Science and Heat Treatment, 279-286, 2006.
 
[110]  Dub, V.S., Dub, A.V., and Makarycheva, E.V., Role of impurity and process elements in the formation of structure and properties of the structural steel, Metal Science and Heat Treatment, 279-286, 2006.
 
[111]  Brian, C.L., and Messmer, R.P., An electronic model for the effect of alloying elements of the phosphorus induced grain boundary embrittlement of steel, Acta Metallugica, 30, 1811-1818, 1982.
 
[112]  Brian, C.L., and Messmer, R.P., An electronic model for the effect of alloying elements of the phosphorus induced grain boundary embrittlement of steel, Acta Metallugica, 30, 1811-1818, 1982.
 
[113]  Thorne, W.S., Hagemann, S.G., Webb, A., and Clout, J., Banded iron formation-related iron ore deposits of the Hamersley Province, Western Australia; Econ Geol Rev, 15, 197-221, 2008.
 
[114]  Thorne, W.S., Hagemann, S.G., Webb, A., and Clout, J., Banded iron formation-related iron ore deposits of the Hamersley Province, Western Australia; Econ Geol Rev, 15, 197-221, 2008.
 
[115]  Guider, J.W., Iron ore beneficiation - key to modern steelmaking, Miner. Eng. 33, 410-413, 1981.
 
[116]  Guider, J.W., Iron ore beneficiation - key to modern steelmaking, Miner. Eng. 33, 410-413, 1981.
 
[117]  Dobbins, M.S., Burnet, G., Production of an iron ore concentrate from the iron-rich fraction of power plant fly ash. Resour. Conserv. 9, 231-242, 1982.
 
[118]  Dobbins, M.S., Burnet, G., Production of an iron ore concentrate from the iron-rich fraction of power plant fly ash. Resour. Conserv. 9, 231-242, 1982.