Journal of Geosciences and Geomatics. 2017, 5(4), 173-185
DOI: 10.12691/JGG-5-4-2
Original Research

Landslide Susceptibility Mapping and Risk Assessment on the Bamenda Mountain (Cameroon Volcanic Line)

Guedjeo C. S1, 2, , Kagou Dongmo A.1, Wotchoko P.2, Nkouathio D. G.1, Chenyi M. L.1, Wilson Buma G1 and Kamgang K. V1

1Department of Earth Sciences, Faculty of Sciences, University of Dschang, Dschang, Cameroon

2Department of Geology, Higher Teacher’s Training College, University of Bamenda, Bambili, Cameroon

Pub. Date: August 01, 2017

Cite this paper

Guedjeo C. S, Kagou Dongmo A., Wotchoko P., Nkouathio D. G., Chenyi M. L., Wilson Buma G and Kamgang K. V. Landslide Susceptibility Mapping and Risk Assessment on the Bamenda Mountain (Cameroon Volcanic Line). Journal of Geosciences and Geomatics. 2017; 5(4):173-185. doi: 10.12691/JGG-5-4-2

Abstract

The Bamenda Mountain (with over 250,000 inhabitants) is one of the strato-volcanoes along the Cameroon Volcanic Line (CVL) with an accidental landscape. This area is frequently affected by landslides, which most at times result in destruction of property and loss of lives. An informative value statistical method using GIS is use to prepared a landslide susceptibility map for the Bamenda Mountain area as well as a quantitative and qualitative risk assessment. This is aimed at revealing areas where future landslide would occur and potential loss. Nine landslide controlling factors including; slope, slope orientation (aspect), curvature, stream density, proximity to roads, geomorphology, proximity to streams, geology and land use were use in the model. A total of 64 slides were inventoried in the area and use to prepare the landslide density map. The weighted informative values for the combined factor and landslide density were used to prepare the landslide susceptibility map for the area. The most significant landslide causing factors in this area are; slope, stream density and slope aspect. The susceptibility map was classified into very high (17.8%), high (25.9%), moderate (33.6%) and low (22.7%). The validated model using the success rate curve indicates that the area under curve is 0.823 and predicts landslides at 82.3% in relatively high classes. Landslide risk assessment in the area indicates 406 buildings, 2,436 people, 1,291.1km of roads, 2152 ha of farmland and an approximate USD83,540,000 worth in assets are expose to high and very high risk. This approach can be implemented in other areas along the CVL to map and assess landslide risk.

Keywords

Bamenda Mountain, landslides, informative value, susceptibility map, risk

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  ABC News (Australia, 2015). Colombia landslide 'tears down everything in its path', killing dozens". AFP. 19 May 2015. Retrieved 20 May 2015.
 
[2]  Aboubakar D., Kagou Dongmo A., Nkouathio D.G. and ngapgue F., 2013. Landslide instability on the Cameroon Western Highlands. Geologic and geotechnical characterization of the Kemkem landslide. Scientific institute Bull., Rabat Moroco, earth science section, 35, 39-51.
 
[3]  Afungang R.N., 2010. erosion, mass movement and landscape dynamics: a case study of the Mezam highlands. Master’s thesis in landscape dynamics and risk. Department of Geography, Umiversity of Yaounde 1- Cameroon, 181 p.
 
[4]  Afungang R., 2015. Spatiotemporal Probabilistic assessment of landslide hazard along the Bamenda Mountain region of the Cameroon Volcanic Line. PhD thesis, University of Porto, 394 p.
 
[5]  Afungang R. and Bateira C., 2016. Statistical modelling of extreme rainfall, return periods and associated hazards in the Bamenda Mountain, NW Cameroon. Revista de Geografia e Ordenamento doTerritorio (GOT), n.o 9 (junho). Centro de Estudos de Geografia e Ordenamento do Territorio, p. 5-19.
 
[6]  Aleotti P. and Chowdhury R., 1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58: 21-44.
 
[7]  Au.news.yahoo.com. 2015. China landslide deaths rise to 38 - Yahoo7". -11-19. Retrieved 2015-12-10.
 
[8]  Ayonghe S.N. and Ntasin E.B., 2008. The geological control and triggering mechanism of landslides of the 20th July 2003 within the Bamboutos Caldera, Cameroon. J. Cameroon Acad. Sci 7(3): 191-203.
 
[9]  Ayonghe S. N., Ntasin E.B., Samalang P., Suh C.E., 2004. The June 27, 2001 landslide on volcanic cones in Limbe, Mount Cameroon, West Africa. J. Afr. Earth Sci., 39, 3-5, 435-439.
 
[10]  Bamenda Land Use Plan. 2015. Contract N°000545/OS /MINMAP/ DGMAS /DMSPI/ CE6/CEA7/ 2013 of 17/12/2013 Consortium: CAMGIS Plc/FruNsutebu& Associates Cameroon P.O. Box 19, Bamenda.
 
[11]  Bateira C. and Soares L., 1997. Movimentos em massa no norte de Portugal. Factores da sua ocorrencia. Territorium, 4, 63-77.
 
[12]  Bateira C., 2010. A avaliao da susceptibilidade natural na region norte de Portugal: Anolise prospective e ordenamento do territurio. Prospectiva e planeamento, 17, 15-32.
 
[13]  Beven K. and Kirkby M., 1993. Flow routing and the hydrological response of channel Network, In: Beven K, Kirkby MJ (eds.), Channel Network Hydrology. John Wiley & Sons, Chichester, pp 99-128.
 
[14]  Carrara A., Cardinali M., Detti R., Guzzetti F., Pasqui V., Reichenbach P., 1991. GISTechniques and Statistical Models in Evaluating Landslide Hazard. Earth Surface Processes and Landforms, 16: 427-445.
 
[15]  Che V.B., Kervyn M., Ernst G.G.J., Trefois P., Ayonghe S., Jacobs P., VanRanst E., Suh C.E., 2011. Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling and triggering factors. Natural Hazards 59, 47-74.
 
[16]  Che V.B., Kervyn M., C.E., Fontijn K., Ernst G.G.J., Del Marmol M.A., Trefois P., & Jacobs P., 2012. Landslide susceptibility assessment in Limbe (SW Cameroon): a field calibrated seed cell and informative value method.Catena 92, 83-98.
 
[17]  Crozier M.J. and Glade T., 2005. Landslide hazard and risk: issues, concepts, and approach. In: Glade T, Anderson M, Crozier MJ (eds) Landslide hazard and risk. Wiley, New York, pp 1-40.
 
[18]  Cruden D.M. and Fell R., 1997. Landslide risk assessment. Proc. Int. Workshop on Landslide Risk Assessment, Balkema, 371p.
 
[19]  Dai F.C. and Lee, C.F., 2002. Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42, 213-228.
 
[20]  Dai F. and Lee C.F., 2003. A spatiotemporal probabilistic modelling of storm-induced shallow landslides using aerial photographs and logistic regression. Earth Surface Processes and Landforms, 28(5) 527-545.
 
[21]  Duman T.Y., Can, T., Gokceoglu, C., Nefeslioglu, H.A., 2005. Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability. Hydrology and Earth System Sciences Discussions 2, 155-208.
 
[22]  Evans S.G., 1997. Fatal landslide and landslide risk in Canada in D.M Cruden and R. Fell (eds), landslide risk assessment-proceedings of the workshop on landslide risk assessment, Honolulu, Hawaii, USA, 19-21 February 1997 (Rotterdam A.A. Balkema), 185-196.
 
[23]  Fannin R.J., Eliadorani A. and Wilkinson J.M.T., 2005. Shear strength of cohesionless soils at low effective stress. Geotechnique, Vol. 55, No.6, 467-478.
 
[24]  Feizizadeh B., Blaschke T., 2013, GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65: 2105-2128.
 
[25]  Fell R., 1994. Landslide risk assessment and acceptable risk, Canadian Geotechnical Journal, 31, 261-272.
 
[26]  Fell R., Ho K.K.S., Lacasse S., Leroi E., 2005. A framework for landslide risk assessment andmanagement, Proceedings International Conference on Landslide Risk Management, London,Taylor & Francis, 3-25.
 
[27]  Flentje P. and Chowdhury R.N., 2005. Managing landslide hazards on the Illawarra escarpment. Proceedings of the GeoQuest Symposium on Planning for Natural Hazards – How can we mitigate the impacts? Editor: Associate Professor John Morrison. University of Wollongong, 2-5 February 2005. Published by GeoQuest Research Centre, University of Wollongong 2005, p 65-78.
 
[28]  Gokceoglu C. and Aksoy H., 1996. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Gelogy, 44 (4): 147-161.
 
[29]  Gountie Dedzo M, Kamgang P, Njonfang E, Zangmo Tefogoum G, Kagou Dongmo A., Nkouathio D.G., 2012b. Mapping and assessment of volcanic hazards related to the ignimbritic eruption by AMS in Bambouto Volcano (Cameroon Volcanic Line). Open Geol J 6:72-84.
 
[30]  Guedjeo C. S., Kagou Dongmo A., Ngapgue F., Nkouathio D. G., Zangmo Tefogoum G., Gountié Dedzo M., Nono A., 2013. Natural hazards along the Bamenda escarpment and its environs: The case of landslide, rock fall and flood risks (Cameroon volcanic line, North-West Region). Glo. Adv. Res. J. Geol. Min.Vol. 2(1) pp. 015-026.
 
[31]  Guzzetti F., 2000. Landslide fatalities and evaluation of landslide risk in Italy. Engineering Geology, 58: 89-107.
 
[32]  Hansen A., 1984. Landslide hazard analysis. In: Brunsden, D. & Prior, D.B. (Eds.), Slope Instability, John Wiley and Sons, New York, pp. 523-602.
 
[33]  Henriques C., 2014. Landslide Susceptibility Evaluation and Validation at a Regional Scale. Tese de Doutoramento, Universidade de Lisboa, 563p.
 
[34]  Hosmer D.W. and Lameshow S., 2000. Applied Logistic Regression, 2nd Ed., John Wiley and Sons, London.
 
[35]  Hungr O., Evans S.G., Bovis M.J., Hutchinson J.N., 2001. A review of the classification of landslides of the flow type. Environmental & Engineering Geoscience, 7(3): 221-238.
 
[36]  Hutchinson J., 1988. Genral Report morphological and geotechnical parameters on landslides in relation to geology and hydrogeology, in C. Bonnard (ed_, Proceedings of the 5th International Symposium on landslides, 10-15 July 1988. Lausanne, Switzerland (Rotterdam: A.A. Balkema), 3-35.
 
[37]  Jacob, 2000. The impacts of logging on landslide activity on Clayoquot Sound, British Columbia. Catena, 38: 279-300.
 
[38]  Kavzoglu T.I., Emrehan K.S.I., Ismail C., 2013. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression, Springer-Verlag Berlin Heidelberg.
 
[39]  Kayastha P., Dhital M.R., Smedt F., De, 2013. Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal; Computers & Geosciences 52, 398-408.
 
[40]  Kometa S.S and Ndi R.A., 2012. The Hydro-geomorphological Implications of Urbanisation in Bamenda, Cameroon Journal of Sustainable Development; Vol. 5, No. 6.
 
[41]  Lambi C. M., 2004. A Revisit of the Recurrent Landslides On The Bamenda Escarpment (North West Province Of Cameroon). Journal of Applied Social Sciences, 4(1).
 
[42]  Lee E. M. and Jones D.K., 2004. Background to landslide Assessment. Thomas Telford Ltd, London, Uk.
 
[43]  Leroi E., 1996. Landslide hazard – Risk maps at different scales: objectives, tools and developments. In: Landslides Processes. International Symposium on Landslides. Trondheim, (Eds.), pp 35-52.
 
[44]  Mukenga W., Havenith H.B., Dewitte O., Medjo Eko R., 2016. Spatial Analysis of the Landslide Risk in the Cameroon Volcanic Line (CVL). University of Liege Belgium. Poster.
 
[45]  Nagarajan R., Roy A., Kumar R., Mukherjee A., Khire M., 2000. Landslide susceptibility mapping base on terrain and climate factors for tropical monsoon regions. Bulletin of Engineering Geology and Environment, 58: 275-287.
 
[46]  Ndenecho, E. N. and Eze, B., 2004. Geomorphic and Anthropogenic Factors Influencing Landslides in the Bamenda Highlands (North West Province, Cameroon). Journal of Applied Social Sciences, 4(1).
 
[47]  Nzolang C, Kagami H, Nzenti J.P, Holtz F., 2003. Geochemistry and preliminary data on the neoproterozoic granitoids from the Bantoun Area, West Cameroon: evidence for a Derivation from a Paleoproterozoic to Archeancrust. Polar Geosci 16:196-226.
 
[48]  Nzolang C., 2005. Crustal evolution of the Preacambrian basement in west Cameroon: inference from geochemistry, Sr–Nd and experimental investigation of some granitoids and metamorphic rocks. Ph.D. Thesis. Graduate School of Science and Technology. Niigata University, Japan.
 
[49]  Olivry J.C., 1986. Fleuves et Rivières du Cameroun. MESRES-ORSTOM - ISBN 2-7099 - 0844-2 - 733 p.
 
[50]  Pourghasemi H.R., Pradhan B., Gokceoglu C., Moezzi K.D., 2012. Terrigenous Mass Movements: Detection, Modelling, Early Warningand Mitigation Using Geoinformation Technology. In: Pradhan, B. & Buchroithner, M. (Eds.), Springer Science & Business Media, NewYork.
 
[51]  Schmidt M., and Glade T., 2003. Linking global circulation model outputs to regional geomorphic models: a case study of landslide activity in New Zealand, Climate Research, 25, 135-150.
 
[52]  Soares L. and Bateira C., 2013. Movimentos de massaemvertentes no Norte de Portugal. Retrospectiva e actualização. In: RiscosNaturais, Antrópicos e Mistos. omenagemao Professor Doutor Fernando Rebelo. Departamento de Geografia da Faculdade deLetras da Universidade de Coimbra, pp367-383.
 
[53]  Soeters R. and Van Westen C.J., 1996. slope instability recognition, analysis and zonation. In: Turner A.K. & Schister R.L. (Eds), Landslide investigation and mitigation. National Academy Press, Washington, pp 129-177.
 
[54]  Suzen M. L. and Doyuran V., 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyucatchment, Turkey, Eng.Geol., 71, 303-321.
 
[55]  Tchindjang M., 2012. paradoxes et risques dans les hautes terres camerounaises: multifonctionnalité naturelle et sous valorisation humaine. HDR, Vol. 3 Université de Paris 7, 266p.
 
[56]  Tchindjang M. Amougou J.A. Abossolo S.A. and Bessoh Bell S., 2012, Challenges of climate change, landscape dynamics and environmental risks in Cameroon. In Runge J(Ed): Landscape evolution, neotectonics and quaternary environmental change in Southern Cameroon. Palaeoecology of Africa, 31, chap. 5, pp. 237-286
 
[57]  Tchindjang, 2015. Mapping of natural hazards in Cameroon. The University of Yaoundé I. PO BOX 30464 Yaounde.Thiery Y., Malet J.P., Sterlacchini S., Puissant A. & Maquaire O., 2007. Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, 92: 38-59.
 
[58]  Toteu S.F, Van Schmus W.R, Penaye J, Michard A., 2001. New U-Pb and Sm-Nd data from North-Central Cameroon and its bearing on the pre-Pan African history of Central Africa. Precambrian Res 108:45-73.
 
[59]  Van Westen C.J., Rengers N. & Soeters R., 2003. Use of geomorphological information in indirect landslide susceptibility assessment. Nat. hazards, 30, 3, 399-419.
 
[60]  Van Westen C.J., Van Asch, T.WJ. & Soeters R., 2006. Landslide hazard and risk zonation why is it still so difficult? Bull. Engineering Geol. Environ., 65, 2, 167-184.
 
[61]  Varnes D.J. & IAEG, Commission on landslide and other mass movement on slopes, 1984. Landslide hazard zonation: A review of principles and practice. The UNESCO Press, Paris, 63p.
 
[62]  Von Routte J., Papritz A., Lehman P., Rickli C. & Or D., 2011. Spatial statistical modeling of shallow landslides-Validating predictions for different landslide inventories and rainfall events. Geomorphology, 133: 11-22.
 
[63]  Yin K.L., and Yan T.Z., 1988. Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of 5th Int Symp on Landslides, Lausanne, Switzerland 2:1269-1272.
 
[64]  Zangmo T. G., Kagou Dongmo, A., Nkouathio, D. G., Wandji, P., 2009. Typology of natural hazards and assessment of associated risks in the mount Bambouto caldera (Cameroon Line, West-Cameroon). Acta Geologica Sinica, vol. 83, N° 5, pp 1008-1016.
 
[65]  Zangmo T. G, Nkouathio D.G, Kagou Dongmo A, Gountié Dedzo M, Kamgang P, Nono A., 2014a Study of Multi-Origin Hazards and Assessment of Associated Risks in the Lefo Caldera (Bamenda Volcano, Cameroon Line). International Journal of Geosciences, 5, 1300-1314.
 
[66]  Zangmo T. G, Kagou Dongmo A, Nkouathio D.G, Gountié Dedzo M, Kamgang P,. 2016. The Volcanic Geoheritage of the Mount Bamenda Calderas (Cameroon Line): Assessment for Geotouristic and Geoeducational Purposes.
 
[67]  Zezere J.L., 1997. Movimentos de vertente e Perigosidada geomorfoligica na Region a Norte de Lisbona, Ph.D. Thesis, University of Lisbon, Portugal.
 
[68]  Zezere J.L., Ferreira A.B. & Rodrigues M.L., 1999. Landslides in the north of Lisbon region (Portugal): Conditioning and triggering factors. Physics Chem. Earth, Part A, 24, 10, 925-934.
 
[69]  Zogning A., Ngouanet C., Tiafack O., 2007. The catastrophic geomorphological processes in humid tropical Africa: a case study of the recent landslide disasters in Cameroon. Sedimentary Geology 199, 13-17.