Journal of Geosciences and Geomatics. 2017, 5(2), 65-77
DOI: 10.12691/JGG-5-2-3
Original Research

Transitional Basalts and Eruptive Dynamisms around Nkoumelap Locality (West of the Bamoun Plateau, Cameroon Volcanic Line): Petrography and Volcanic Risks’ Evaluation

Luc Achille ZIEM A BIDIAS1, 2, , Amidou MOUNDI1 and Jonas Didero TAKODJOU WAMBO1

1Département des Sciences de la Terre et de l’Univers, Faculté des Sciences, Université de Yaoundé 1, BP 812, Yaoundé, Cameroun

2Laboratoire de Géologie, École Normale Supérieure, Université de Yaoundé-1, BP 047, Yaoundé, Cameroun

Pub. Date: April 08, 2017

Cite this paper

Luc Achille ZIEM A BIDIAS, Amidou MOUNDI and Jonas Didero TAKODJOU WAMBO. Transitional Basalts and Eruptive Dynamisms around Nkoumelap Locality (West of the Bamoun Plateau, Cameroon Volcanic Line): Petrography and Volcanic Risks’ Evaluation. Journal of Geosciences and Geomatics. 2017; 5(2):65-77. doi: 10.12691/JGG-5-2-3

Abstract

Diverse eruptive dynamisms have occurred in the west side of the Bamoun plateau, producing ashes, scoria, lapilli, blocks and bombs. The lavas are essentially transitional basalts, and rhyolites. Transitional basalts are rather exceptional in the Cameroon Volcanic Line (CVL). The chemical composition of the minerals of these basalts is indicative of the thermobarometric conditions of their formation. In the locality of Nkoumelap situated to the West of the Bamoun plateau, they crystallized at low pressure (1.8 Kb) and relatively high temperatures (from 1110°C to 862°C in clinopyroxenes and 1044°C to 801°C in opaque minerals of transitional basalts) and differ significantly from the alkali basalts of the same plateau as well as from all the typical alkali basalts of the CVL. Measures of the distribution of volcanic products coupled to the volcanic history of the region could enhance understanding of the intensity of volcanic events and facilitate evaluation of induced risks. The Landstat 7 ETM+ data of the region was used to elaborate a hazards map of the zone, highlighting volcanic risks. This study, realized in the Bamoun plateau, is the baseline for a vast cartography program of the hazards and risks along the CVL. It could help to better protect the population and efficiently manage risks in case the volcanic activity is revived.

Keywords

eruptive dynamisms, transitional basalts, hazards, risks, Cameroon Volcanic Line

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Moundi, A., Wandji, P., Bardintzeff, J.-M., Ménard, J.-J., Okomo Atouba, L.C., Mouncherou, O.F., Reusser, E., Bellon, H., Tchoua, F.M., 2007. Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la Ligne Volcanique du Cameroun. C.R Géosciences. 339, 396406.
 
[2]  Moundi, A., Wandji, P., Ghogomu, T.R., Bardintzeff, J.M., Njilah, K.I., Foumboure, I., Ntieche, B., 2009. Existence of Quaternary ankaramites among Tertiary flood basalts at Koutaba (Bamoun Plateau, Western Cameroon): petrology and isotope data. Review of the bulgarian geological society, vol. 70, part 1-3, p. 115-124.
 
[3]  Atouba L.C.O., Chazot G., Moundi A., Agranier A., Bellon H., Nonnotte P., Nzenti J.-P. & Kankeu B., 2016. Mantle sources beneath the Cameroon Volcanic Line: geochemistry and geochronology of the Bamoun plateau mafic rocks. Arabian Journal of Geosciences, 9 (4).
 
[4]  Moundi, A., 2004. Les basaltes des plateaux du plateau Bamoun: implication sur les sources des magmas, le contexte et l’évolution géodynamiques. Thèse Doct d’État, Univ. Yaoundé I, 256 p.
 
[5]  Gazel, J., Gerard, G., 1954. Carte géologique de reconnaissance du Cameroun au 1/500000, feuille de Batouri-Est avec notice explicative. Mémoire Direction des Mines et de la Géologie, Yaoundé, Cameroun, 43 p.
 
[6]  Halliday, A.N., Dickin, A., Fallick, A.E., Fitton, J., 1988. Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon line volcanic chain. J. Petrol. 29, 181-211.
 
[7]  Burke, K., 2001. Origin of the Cameroon Line of volcano capped- swells. Journal of Geology. 109, 349362.
 
[8]  Kampunzu, A., Popoff, M., 1991. Distribution of the main Phanerozoic African rifts and associated magmatism: introductory notes, in : A.B kampunzu, R.T Lubala (Eds), Magmatism in Extensional Structural Settings, The Phanerozoic African Plate.
 
[9]  Takodjou Wambo, J.D., Ganno, S., Afahnwie, N.A., Nomo, N.E., Mvondo, O.J., Nzenti, J., 2016. Use of Landsat 7 ETM+ Data for the Geological Structure Interpretation: Case Study of the Ngoura-Colomines Area, Eastern Cameroon. Journal of Geosciences and Geomatics, 4 (3): 61-72.
 
[10]  Leterrier, J., Maury, R., Thonon, P., Girad, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleoseries. Earth and Planetary Science Letters. 59, 139-154.
 
[11]  Lundstrom, C.C., Shaw, H.F., Ryerson, F.J., Williams, Q., Gill, J., 1998. Crystal control of clinopyroxene-melt partitioning in the Di–Ab–An system: implications for elemental fractionations in the depleted mantle. Geochimica et Cosmochimica Acta 62, 2849-2862.
 
[12]  Hill, E., Wood, B.J., Blundy, J.D., 2000. The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53, 203-215.
 
[13]  Wood, B.J., Trigila, R., 2001. Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem. Geol. 172, 213-223.
 
[14]  Gautier, I., Weis, D., Mennessier, J.-P., Vidal, P., Giret, A., Loubet, M., 1990. Petrology and geochemistry of the Kerguelen Archipelago basalts (South Indian Ocean): Evolution of the mantle sources from ridge to intraplate position, Earth Planet, Sci. Lett. 100, 59-76.
 
[15]  Bardintzeff, J.M., 1995. Des risques volcaniques variés: pendant et après l’éruption. Géologues. 106, 19-22.
 
[16]  Guillou, H., Guille, G., Brousse, R., Bardintzeff, J.-M., 1990. Évolution des basaltes tholéiitiques vers des basaltes alcalins dans le substratum volcanique de Fangataufa (Polynésie française), Bull. Soc. geol. France 8 (VI) 3, 537–549.
 
[17]  Boumedhi A., 1988. Les clinopyroxènes dans les basaltes alcalins continentaux (massif central France) : Implications pétrogénétiques, barométriques et caractérisation de la profondeur des reservoirs magmatiques. Thèse Doct., Clermond-Ferrand II, 174p.
 
[18]  Putirka, K., 2008. Thermometers and barometers for volcanic systems. In: Putirka, K., Tepley, F. (Eds.), Minerals, Inclusions and Volcanic Processes. Review in Mineralogy and Geochemistry, Miner. Soc. Am. 69, pp. 61-120.
 
[19]  Lepage, L.D., 2003. ILMAT: A Magnetite-Ilmenite Geothermobarometry Program.
 
[20]  Andersen, D.J., Lindsley, D.H., 1988. Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides. American Mineralogist. 73, 714-726.
 
[21]  Nassir, S., 1994. PTOXY: Software package for the calculation of pressure-temperature-oxygen fugacity using a selection of metamorphic geothermobarometers. Computers & Geosciences. 20 (9), 12971320.
 
[22]  Morimoto, N., Fabriès, J., Ferguson, A.K., Ginzburt, I.V., Ross, M., Seifert, F.A., Zussman, J., 1988. Nomenclature of pyroxenes. Mineralogy Magmatism. 52, 535550.
 
[23]  Aoki, K.I., Kushiro, I., 1968. Some clinopyroxenes from ultramafic inclusions in Dreiser weeher, Eifel. Contributions to Mineralogy and Petrology. 18, 326337.
 
[24]  Aoki, K.I., Shiba, I., 1973. Pyroxenes from lherzolites inclusions of Itinonagata, Japan. Lithos. 6, 41-51.
 
[25]  Caldeira, M., Munhá, J.M., 2002. Petrology of ultramafic nodules from São Tomé Island, Cameroon Volcanic Line (oceanic sector). Journal of African Earth Sciences. 34, 231 246.
 
[26]  Jagoutz, E., Palme, H., Baddenhaussen, H., Blum, K., Cendales, M., Dreibus, G., Spettel, B., Lorenz, V., Wanke, H., 1979. The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic nodules. Proceedings of the 10th Lunar Planetery Science Conference, 20312050.
 
[27]  Thouret, J., 1993. Gestion des risques naturels et réalités sociales. Soc.Géol. De France. 20p
 
[28]  Wandji, P., Wotchoko, P., Bardintzeff, J.M., Bellon, H., 2010. Late Tertiary and Quaternary alkaline volcanism in the western Noun plain (Cameroon Volcanic Line): new K-Ar ages, petrology and isotope data. Bulgarian Academy of Sciences. 48, 67-94.
 
[29]  Gaudru, H., Pradal, E., 2013. A la découverte des volcans extrêmes. Vuibert, 192 pp.
 
[30]  Wandji, P., Ménard, J.-J., Tchoua, F.M., 1994. L’activité hydromagmatique récente dans la plaine du Noun (Ouest-Cameroun) et les aléas volcaniques associés. C.R Acad. Sci. Paris, t. 319 (série II), 417-422.
 
[31]  Sigurdsson, H., Devine, J., Tchoua, F.M., Presser, T., Pringle, M.K., Evans, W., 1987. Origin of the lethal gas burst from lake Monoun, Cameroon. J. Volcano. Geotherm. Res. 31, 116.
 
[32]  Ziem A Bidias L.A., 2007. Importance géologique et environnementale des ‘‘lahars’’ de Bangourain dans le massif du Mbam (Département du Noun, Ouest-Cameroun). Mém. DEA, Univ. Yaoundé I, 59 p.
 
[33]  Bardintzeff, J.M., Wandji, P., Nkouathio, D., Itiga Z., Wotchoko, P., Tchokona Seuwui, D., Kagou Dongmo, A., Temdjim, R., Moundi, A., Chakam Tagheu, P.J., Tsakack, J.P.F., Mouncherou, O.F., Tiabou, F.A., Ntieche, B., Ziem a Bidias, L.A., 2012. The Cameroon Volcanic Line: landscape, natural hazard and human life. Volcandpark, 1st International Congress on Management and Awareness in Protected Volcanic Landscapes, Olot, Spain, 21-25 May.