Journal of Geosciences and Geomatics. 2017, 5(1), 1-11
DOI: 10.12691/JGG-5-1-1
Original Research

Petrogenesis of Lava from Wainama West, Mount Oku (CVL): Source Characterization and Magma Evolution

Wotchoko Pierre1, , Nkouathio David Guimollaire2, Kouankap Nono Gus Djibril1, Chenyi Marie-Louise Vohnyui1, 2, Guedjeo Christian Suh1, 2, Bulam Annyta Tangie1, Tchokona Seuwui dieudonne3 and Seplong Yannick1, 3

1Department of Geology, Higher Teacher Training College, University of Bamenda, Bambili, Bamenda, Cameroon

2Department of Earth Sciences, Faculty of Sciences, University of Dschang, Dschang, Cameroon

3Department of Earth Sciences, Faculty of Sciences, University of Yaoundé 1, Yaoundé, Cameroon

Pub. Date: January 05, 2017

Cite this paper

Wotchoko Pierre, Nkouathio David Guimollaire, Kouankap Nono Gus Djibril, Chenyi Marie-Louise Vohnyui, Guedjeo Christian Suh, Bulam Annyta Tangie, Tchokona Seuwui dieudonne and Seplong Yannick. Petrogenesis of Lava from Wainama West, Mount Oku (CVL): Source Characterization and Magma Evolution. Journal of Geosciences and Geomatics. 2017; 5(1):1-11. doi: 10.12691/JGG-5-1-1

Abstract

The Wainama West area belongs to the Cameroon volcanic Line (CVL). Three petrographic types of lavas are identified: basanites, trachytes and rhyolites. Basanites with porphyritic texture are made up of minerals: plagioclase, clinopyroxene, olivine phenocrysts and opaque minerals within a groundmass; trachytes with microlitic-porphyritic texture are composed of phenocrysts of sanidine, hornblende, plagioclases, pyroxene and opaque minerals enclosed in a fine groundmass showing a preferred orientation. Rhyolite shows a microlitic-porphyritic texture made up of quartz, sanidine and opaque minerals in the groundmass. According to their geochemical behaviour, major elements show an enrichment in SiO2 (42.7–70.7 wt.%), Al2O3 (13.7–16.6 wt.%), Na2O (2.3–6.3 wt.%), K2O (1.3–4.9 wt.%) and an impoverishment in MgO (8.3–0.02 wt.%) and CaO (10.0–0.5 wt.%) from basanite to rhyolite. Some binary diagrams indicate a good correlation with some minor elements (Cr, Ba, Zr, Sr, Rb, and Nb) against SiO2. REE patterns of the rocks are characterized by a negative anomaly in Eu (0.3Eu/Eu*0.4) in basanite and weak negative anomaly in Eu (0.1Eu/Eu*0.2) from trachytes to rhyolites, with parallel profiles. The Wainama West lavas are found to have originated from a single primary melt similar to that of OIB and the continental basalt but with slightly higher Nb/Ta content. From the Dy/Yb vs La/Yb diagrams, the major processes resulting to the generation of this primary melt is the partial melting of garnet peridotite, of the high degree (11-12%). The Wainama West alkali lavas were formed in intraplate setting of continental part of the CVL.

Keywords

Wainama West, petrography, geochemistry, partial melting, garnet peridotite

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Asaah, A. V., Zoheir, B., Lehmann, B., Frei, D., Burgess, R., and Suh, C. E., 2015. Geochemistry and geochronology of the ~620 My gold-associated Batouri granitoids, Cameroon. International Geology Review, v. 57, p. 1485-1509.
 
[2]  Atouba O. C.L., Chazot G., Moundi A., Agranier A., Bellon H., Nonnotte P., Nzenti J. P., Kankeu B., 2015. Mantle sources beneath the Cameroon Volcanic Line: geochemistry and geochronology of the Bamoun plateau mafic rocks. Arab. J. Geosci (2016) 9:270.
 
[3]  Bogaard, P.J.F, Wörner, G., 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from theMiocene Vogelsberg, Central Germany. J. Petrol. 44 (2003) 569-602.
 
[4]  Burke, K., 2001. Origin of the Cameroon Line of volcano-capped swells. J. Geol. 109, 349-362.
 
[5]  Cox, K. G., Bell, J. D., Pankhurst, R. J., 1987. The interpretation of igneous rocks. Georges Allen and Unwin London, p450.
 
[6]  Deruelle, B., Ezangono J., Lissom J., Loule E., Ngnotue N., Ngounouno I., Nkoumbou C., 1987. Mio-Pliocene basaltic lava flows and phonolitic and trachytic plugs north and east of Ngaoundéré (Adamawa, Cameroon). In: C., Matheis A., Schandelmeier (Eds), Current Research in African Earth Sciences, Balkema, Rotterdam, 261-264.
 
[7]  Deruelle, B., Moreau, C., Nkoumbou, C., Kambou, R., Lissom, J., Njonfang, E., Ghogumu, R. T., Nono, A., 1991. The Cameroon Line: a review. In Kampunzu, A. B., and Lubala, R. T., eds. Magmatism in extension structure settings: the Phanerozoic African Plate. Berlin, Springer, p 275-327.
 
[8]  Déruelle, B., Ngounouno, I., Demaiffe, D., 2007. The Cameroon Hot Line (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. C. R. Geoscience 339, p589-600.
 
[9]  Fitton, J. G., 1987. The Cameroun Line, West Africa; a comparison between oceanic and continental alkaline volcanism. G. and Upton, B.G.J. (eds), Alkaline igneous rocks. Geological Society of London Special Publication 30, 273-291.
 
[10]  Franz, G., Steiner, G., Volker, F., Pudlo, D., hammerschmidt, K., 1999. Plume related alkaline magmatism in Central Africa- the Meidob hills (W Sudan). Chem. Geol. 157, 27-47.
 
[11]  Geze, B., 1953. Les volcans du Cameroun occidental. Bulletin of Volcanology 13, 63-92.
 
[12]  Gourgaud A., Vincent P.M., 2004. Petrology of two continental alkaline intraplate series at Emi Koussi volcano, Tibesti, Chad. J Volcanol Geotherm Res 129:261-290.
 
[13]  Halliday, A.N., Dickin, A.P., Fallick, A.E., Fitton, J.G., 1988. Mantle dynamics: a Nd, Sr, Pb and O isotopics study of the Cameroon line volcanic chain. J. Petrol. 29, 181-211.
 
[14]  Irvine, T.N., Baragar, W.R.A., 1971. A guide to chemical classification of the common volcanic rocks. Canadian journal of Earth Sciences 8, 523-548.
 
[15]  Kamgang, P., Njonfang, E., Nono, A., Gountie, D., Tchoua, F., 2010. Petrogenesis of a silicic magma system: Geochemical evidence from Bamenda Mountains, NW Cameroon, Cameroon Volcanic Line. 341, 12, p645-654.
 
[16]  Kamgang, P., Chazot, G., Njonfang, E., Ngongang, N. B., Tchoua, F., 2013. Mantle sources and magma evolution beneath the Cameroon Volcanic Line: geochemistry of mafic rocks from the Bamenda Mountains (NW Cameroon). Gondwana Res. 24, p727-741.
 
[17]  Kampunzu, A.B., Popoff, M., 1991. Distribution of the main Phanerozoic African rifts and associated magmatism, introductory notes. In: Kampunzu, A.B., Lubala, R.(Eds.), Magmatism in Extensional Structural Settings. The Phanerozoic African Plate. Springer, Berlin, New York, Heidelberg, pp. 2-10.
 
[18]  Le Maitre, R. W., 2002. Igneous rocks: A classification and glossary of terms, second edition, Cambridge press.
 
[19]  Marzoli, A., Renne, P. R., Peccirillo, E. M., Castorina, F., Bellieni, G., Melfi, A. G., Nyobe, J. B., N'ni, J., 1999. Silicic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundéré): 40Ar–39Ar dates, petrology, Sr–Nd–O isotopes and their petrogenetic significance. Contrib. Mineral. Petrol. 135, 133-150.
 
[20]  McDonough, W.F., and Sun, S.S., 1995. The composition of the earth. Chem. Geol. 120, 223-253.
 
[21]  Münker, C., Pfänder, J. A., Weyer, S., Büchl, A., Kleine, T., Mezger, K., 2003. Evolution of planetary cores and the Earth–Moon system from Nb/Ta systematics. Science 301, 84-87.
 
[22]  Ngounouno, I., 1998. Chronologie, Pétrologie et cadre géodynamique du magmatisme cénozoïque de la Ligne duCameroun. In: Geosc. Au Cameroun, Ed., collect. Géocam, 1/1998, Press of University of Yaounde I, 169-184.
 
[23]  Ngounouno, I., Deruelle, B., Demaiffe, D., 2000. Petrology of the bimodal Cenozoic volcanism of the Kapsiki plateau (northernmost Cameroon, Central Africa). Journal of Volcanology and Geothermal Research 102, p21-44.
 
[24]  Njilah, I. K., 1991. Geochemistry and petrogenesis of Tertiary–Quaternary volcanic rocks from Oku-Ndu area, N.W. Cameroon. Ph.D. Thesis, University of Leeds.
 
[25]  Njilah, K., Temdjim, R., Nzolang, C., Tchuitchou, R., Ajonina, H., 2007. Geochemistry of Tertiary–Quaternary lavas of Mount. Oku, North-West Cameroon. Rev. Fac. Ing. Univ. Antioquia 40, p59-75 (Junior).
 
[26]  Njilah, K., moundi, A., Temdjim, R., Ntieche, B., 2013. Sr-Nd-Pd istopic studies of lavas from mount Oku volcano, North-west Cameroon: A case involving HIMU, depleted, and enriched mantle sources. Journal of Geology and Mining Research, vol. 5(5), pp.124-135.
 
[27]  Nkouathio, D. G., Kagou D. A., Bardintzeff, J. M., Wandji, P., Bellon H, Pouclet A., 2008. Evolution of volcanism in graben and horst along the Cenozoic Cameroon Line (Africa): implication for tectonic evolution and mantle source composition. Mineralogy and Petrology 94(3-4), p287-303.
 
[28]  Pfänder, J. A., Münker, C., Stracke, A., Mezger, K., 2007. Nb/Ta and Zr/Hf in ocean island basalts – implications for crust-mantle differentiation and the fate of niobium. Earth Planet. Sci. Lett. 254, 158-172.
 
[29]  Platz, T., Foley, S. F., André, L., 2004. Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga Province, D.R. Congo. J. Volcanol. Geotherm. Res. 136, 269-295.
 
[30]  Pouclet, A., Kagou, D. A., Bardintzeff, J. M., Wandji, P., Chakam, T. P., C., Nkouathio, D. G., Bellon, H., Ruffet, G., 2014. The Mount Manengouba, a complex volcano of the Cameroon line: Volcanic history, Petrology and geochemical features. Journal of Africa Earth Sciences 97, 297-321.
 
[31]  Rogers, N. W., Macdonald, R., Fitton, J. G., George, R., Smith, M., Barreiro, B., 2000. Two mantle plumes beneath the East African Rift system: Sr, Nd and Pb isotope evidence from Kenya rift basalts. Earth Planet. Sci. Lett. 176, 387-400.
 
[32]  Rogers, N. W., Thomas, L. E., Macdonald, R., Hawkesworth, C. J., Mokadem, F., 2006. 238U–230Th disequilibrium in recent basalts and dynamic melting beneath the Kenya rift. Chem. Geol. 234, 148-168.
 
[33]  Schandl, E. S and Gorton, M. P., 2002. Applications of high field strength elements to discriminate tectonic setting in VMS environments. Economic geology. 97, 629-642.
 
[34]  Suh C. E., Sparks R. S. J., Fitton J. G., Ayonghe S. N., Annen C., Nana R. and Luckman A., 2003. The 1999 and 2000 Eruptions of Mount Cameroon: Eruption BehPetrochemistry of Lava. Bulletin of Volcano No. 4, pp. 267-281.
 
[35]  Sun, S. S., and McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42, p 313-345.
 
[36]  Wandji, P., Tchokona, S. D., Bardintzeff, J. M., Bellon, H., Platevoet, B., 2008. Rhyolite of the Mbèpit Massif in the Cameroon Volcanic Line: an early extrusive volcanic episode of Eocene age. Mineralogy and petrology. 94, p271-286.
 
[37]  Wandji, P., Tsafack, J. P. F., Bardintzeff, J. M., Nkouathio, D. G., Kagou D. A., Bellon, H., Guillou, H., 2009. Xenoliths of dunites, wehrlites and clinopyroxenite in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): petrogenetic implications. Mineral Petrol 96(1):81-98.
 
[38]  Yokoyama, T., Aka, F.T., Kusakabe, M., Nakamura, E., 2007. Plume–lithosphere interaction beneath Mount. Cameroon volcano, West Africa: constraints from 238U–230Th–226Ra and Sr–Nd–Pb isotopic systematics. Geochimica and Cosmochimica Acta 71, p1835-1854.
 
[39]  Zhang, J.J., Zeng, Y.F., Zhao, Z.F., 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalt in east central China. Lithos 110 p305-326.