Journal of Geosciences and Geomatics. 2016, 4(4), 73-81
DOI: 10.12691/JGG-4-4-1
Original Research

Monitoring of a Coastal Zone by Independent Fast Photogrammetric Surveys: the Case of Monterosso a Mare (Ligurian Sea, Italy)

Arianna Pesci1, , Giordano Teza2, Marina Bisson3, Filippo Muccini4, Paolo Stefanelli4, Marco Anzidei5, Roberto Carluccio4, Iacopo Nicolosi4, Alessandro Galvani5, Vincenzo Sepe5 and Cosmo Carmisciano4

1Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, via Creti 12, 40128 Bologna, Italy

2Dipartimento di Geoscienze, Università degli Studi di Padova, via Gradenigo, 6, 35131 Padova, Italy

3Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, via della Faggiola, 32, 56126 Pisa, Italy

4Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma2, via di Vigna Murata 605, 00143 Roma, Italy

5Istituto Nazionale di Geofisica Vulcanologia, CNT, via di Vigna Murata 605, 00143 Roma, Italy

Pub. Date: July 01, 2016

Cite this paper

Arianna Pesci, Giordano Teza, Marina Bisson, Filippo Muccini, Paolo Stefanelli, Marco Anzidei, Roberto Carluccio, Iacopo Nicolosi, Alessandro Galvani, Vincenzo Sepe and Cosmo Carmisciano. Monitoring of a Coastal Zone by Independent Fast Photogrammetric Surveys: the Case of Monterosso a Mare (Ligurian Sea, Italy). Journal of Geosciences and Geomatics. 2016; 4(4):73-81. doi: 10.12691/JGG-4-4-1

Abstract

The Structure-from-Motion photogrammetry (SfM) allows a fast and easy data acquisition and a highly automated data processing, leading to accurate photorealistic point clouds. The results of a SfM-based modeling of the coastal zone of Monterosso a Mare (Eastern Liguria, Italy) are shown here. Four photogrammetric surveys of the area were carried out from both moving surface (boat) and aerial (Unmanned Aerial Vehicle) platforms. The corresponding results were compared in order to provide information about precision and model reliability from fast ad cheap SfM surveys carried out without Ground Control Points (GCPs). The important issue of scale factor evaluation was solved by means of selection of points easily recognizable in each point cloud and measurement of the length of the polyline that connects these points. The ratio between the lengths of the polyline defined on a point cloud and the corresponding polyline defined in a metric reference frame provided the scale factor. The results highlight that the SfM technique can be used in emergency conditions, where GCPs cannot be used, and is compatible with a floating platform-based observation, leading to point clouds whose resolution is some centimeters for an acquisition distance of 100-150 m.

Keywords

photogrammetry, structure-from-motion, fast surveying, monitoring, 3D modeling, coast

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Z. Li, Q. Zhu and C. Gold, Digital Terrain Modeling. Principles and methodology, CRC press, Boca Raton FL, 2005.
 
[2]  Anzidei, M., Esposito, A., Bortoluzzi, G. and De Giosa, F., “High resolution Bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy),” Annals of Geophysics, 48 (6). 899-921. Dec.2005.
 
[3]  Delacourt, C., Allemand, P., Berthier, E., Raucoules, D., Casson, B., Grandjean, P., Pambrun, C. and Varel, E., “Remote-sensing techniques for analysing landslide kinematics: a review,” Bulletin de la Societé Géologique de France, 178 (2). 89-100. 2007.
 
[4]  Travelletti, J., Malet, J.-P. and Delacourt, C., “Image-based correlation of Laser Scanning point cloud time series for landslide monitoring,” International Journal of Applied Earth Observation and Geoinformation, 32. 1-18. Oct.2014.
 
[5]  Benoit, L., Briole, P., Martin, C., Tom, C., Malet, J.-P., and Ulrich, P., “Monitoring landslide displacements with the Geocube wireless network of low-cost GPS,” Engineering Geology, 195. 11-121. Sep.2015.
 
[6]  Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J. and Reynolds, J.M. “‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications,” Geomorphology, 179. 300-314. Dec.2012.
 
[7]  Tarolli, P., Preti F. and Romano, N., “Terraced landscapes: From an old best practice to a potential hazard for soil degradation due to land abandonment,” Anthropocene, 6. 10-25. Jun.2014.
 
[8]  Abbate E., Bortolotti, V., Passerini, P., and Sagri, M., “The Northern Apennines geosyncline and continental drift,” Sedimentary Geology, 4 (3-4). 637-642. 1970.
 
[9]  Marroni, M., Monechi, S., Perilli, N., Principi, G. and Treves, B., “Late Cretaceous flysch deposits of the Northern Apennines, Italy: age of incention of orogenesis-controlled sedimentation,” Cretaceous Research, 13. 487-504. Sep.1992.
 
[10]  Bortolotti, V., Principi, G. and B. Treves, B., Ophiolites, Ligurides and the tectonic evolution from spreading to convergence of a Mesozoic Western Tethys segment, in Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins, Kluwer Academic Publishers, Dordrecht, the Nederlands, 2001, 151-164.
 
[11]  Bernini, M. and G. Papani, G., “La distensione della fossa della Lunigiana nord-occidentale,” Bollettino della Società Geologica Italiana 121 (3). 313-341. Oct.2002.
 
[12]  Ferranti, L., Antonioli, F., Anzidei, M., Monaco, C. and P. Stocchi, P., “The timescale and spatial extent of vertical tectonic motions in Italy: insights from relative sea-level changes studies,” Journal of the Virtual Explorer, 36 (30).
 
[13]  Cerrina Feroni A., Martinelli, P. and Ottria, G., “La posizione dei Flysch ad Elmintoidi (Formazione del M.te Antola e di Ortonovo) nella piega Castelpoggio-Ortonovo a NW delle Alpi Apuane,” Accademia Nazionale delle Scienze detta dei XL, scritti e documenti, 14. 181-193. Jun.1995.
 
[14]  ISPRA - Servizio Geologico d’Italia, “Carta Geologica d’Italia in scala 1 :50.000 - Foglio n. 247,” Levanto, Roma, 2011.
 
[15]  Giammarino, S. and Giglia, G., “Gli elementi strutturali della piega di La Spezia nel contesto geodinamico dell’Appennino Settentrionale,” Bollettino della Società Geologica Italiana, 109 (4). 683-692. Nov.1993
 
[16]  Cevasco, A., “I fenomeni di instabilità nell’evoluzione della costa alta delle Cinque Terre (Liguria Orientale),” Studi Costieri, 13. 93-109. 2007.
 
[17]  Bisson, M., Fornaciai, A., and F. Mazzarini, F., “A geographic database used for GIS applications,” SITOGEO, 30 (3), 325-335. May.2007.
 
[18]  Granshaw, S.I., and Fraser, C.S., “Editorial: Computer Vision and Photogrammetry: Interaction or Introspection?,” The Photogrammetric Record, 30 (149). 3-7. Mar.2015
 
[19]  Remondino F, Spera, M.G., Nocerino, E., Menna, F. and F. Nex, F., “State of the art in high density image matching,” The Phogrammetric Record, 29 (146), 144–166. Jun.2014.
 
[20]  James, M.R., and Robson, S., “Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application,” Journal of Geophysical Research, 117 (F03017).
 
[21]  Ninfo, A., Zizioli, D., Meisina, C., Castaldini, D., Zucca, F., Luzi, L., and De Amicis, M., “The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: Preliminary results,” Annals of Geophysics., 55 (4). 727-733. Apr.2012.
 
[22]  Teza, G., Pesci, A. and Ninfo, A., “Morphological analysis for architectural applications: comparison between laser scanning and Structure-from-Motion photogrammetry,” Journal of Survey Engineering, Jan.2016.
 
[23]  N. Micheletti, J.H. Chandler, and S.N. Lane, Structure from Motion (SfM) photogrammetry, in Geomorphological Techniques, British Society of Geomorphology, London, 2015. [E-book] Available: http://www.geomorphology.org.uk/sites/default/files/geom_tech_chapters/2.2.2_sfm.pdf. [Accessed March 3, 2016].
 
[24]  Agisoft PhotoScan web site. Available: http://www.agisoft.com. [Accessed March 3, 2016].
 
[25]  Barry P. and Coakley, R., “RPAS photogrammetry,” Civil Engineering Surveyor, 2013(07/08). 37-41. Jul.Aug. 2013.
 
[26]  Innovmetric PolyWorks software package web site. Available: http://www.innovmetric.com. [Accessed March 3, 2016].
 
[27]  Sun Y., Zhao, L., Zhou, G. and Yan, L., “Absolute Orientation Based on Distance Kernel Functions,” Remote Sensing, 8 (3). 213-231. Mar.2016.