Journal of Geosciences and Geomatics. 2016, 4(2), 36-41
DOI: 10.12691/JGG-4-2-3
Original Research

Identification of Spatial Distribution of Geochemical Anomalies Based on GIS and C-A Fractal Model – A Case Study of Jiurui Copper Mining Area

Anh Huy Hoang1 and Tien Thanh Nguyen1,

1Hanoi University of Natural Resources and Environment, Hanoi, Vietnam

Pub. Date: April 22, 2016

Cite this paper

Anh Huy Hoang and Tien Thanh Nguyen. Identification of Spatial Distribution of Geochemical Anomalies Based on GIS and C-A Fractal Model – A Case Study of Jiurui Copper Mining Area. Journal of Geosciences and Geomatics. 2016; 4(2):36-41. doi: 10.12691/JGG-4-2-3

Abstract

Identification of spatial distribution of geochemical anomalies for mineral exploration is a fundamantal issue in the field of exploration geochemistry. Conventional methods are hard to identify geochemical anomalies due to extreme values. In this study, C-A fractal model is first applied to identify anomalies, GIS is then used to visualized the results. 1482 geochemical analytical data of Cu ore-forming element from Jiurui copper mining area are used as as one experiment. The results show that this method can effectively identify spatial distribution of geochemical anomalies. These anomalous areas can be used to interpret possible origins of mineralization, which is agreement with petrological analysis and field survey results.

Keywords

spatial distribution, geochemical anomalies, GIS, C-A fractal model

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ahrens, L., 1953. A fundamental law of geochemistry. Nature, 172, 1148.
 
[2]  Ahrens, L., 1954a. The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochim Cosmochi Acta, 5, 49-74.
 
[3]  Ahrens, L., 1954b. The lognormal distribution of the elements II. Geochim Cosmochi Acta, 6, 121-132.
 
[4]  Ahrens, L., 1957. Lognormal-type distribution III. Geochim Cosmochi Acta, 11, 205-213.
 
[5]  Akima, H., 1978. A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points. ACM Transactions on Mathematical Software, 4(2), 148-164.
 
[6]  Akima, H., 1996. Algorithm 761: scattered-data surface fitting that has the accuracy of a cubic polynomial. ACM Transactions on Mathematical Software, 22(3), 362-371.
 
[7]  Carranza, E., 2009. Geochemical anomaly and mineral prospectivity mapping in GIS in Handbook of Exploration and Environmental Geochemistry. Amsterdam: Elsevier.
 
[8]  Cheng, Q.M., Agterberg F., Ballantyne, S., 1994. The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration, 51(2), 109-130.
 
[9]  Cheng, Q.M., 1999. Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration, 65(3), 175-194.
 
[10]  Cheng, Q.M, Li Q., Xu Y., 2000. Self-similarity recognition and geochemical anomaly separation. In Proceedings of Geological Association of Canada Meeting (GeoCanada 2000). Calgary: University of Calgary.
 
[11]  Cheng, Q.M., 2004. A new model for quantifying anisotropic scale variance and for decomposition of mixing patterns. Mathematical Geology, 36(3), 345-360.
 
[12]  Cheng, Q.M., 2007. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1), 314-324.
 
[13]  Cheng, Q.M., Agterberg, F., 2009. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35(2), 234-244.
 
[14]  Garrett, R., 1989. A cry from the heart. Explore, 66:18-20
 
[15]  Hawkes, H., and Webb, J., 1962. Geochemistry in mineral exploration. New York: Harper.
 
[16]  Huber, P., 1981. Robust statistics. New York: Wiley & Sons.
 
[17]  McGrath, S. and Loveland, P., 1992. The Soil Geochemical Atlas of England and Wales. London: Blackie.
 
[18]  Li, Q.M. and Cheng, Q.M., 2004. Fractal singular-value (eigen-value) decomposition method for geophysical and geochemical anomaly reconstruction. Earth Science - Journal of China University of Geosciences, 29(1),109-118.
 
[19]  Nguyen, T.T., et al., 2013. Robust statistics and EDA techniques for identification of the geochemical anomalies. Computing Techniques for Geophysical and Geochemical Exploration, 35(3), 307-113.
 
[20]  Philip, G.M. and Watson, D.F., 1987. Probabilism in geological data analysis. Geological Magazine, 1987, 124(6), 577-583.
 
[21]  Reimann, C. and Filzmoser, P., 2000. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental geology, 39(9), 1001-1014.
 
[22]  Reimann, C., Filzmoser P. and Garrett, R.G., 2005. Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346(1-3), 1-16.
 
[23]  Rock, N., 1988. Numerical geology. New York Berlin Heidelberg: Springger Verlag.
 
[24]  Tukey, J., 1977. Exploratory Data Analysis. Reading: Addison-Wesley.
 
[25]  Sinclair, A.J., 1974. Selection of threshold in geochemical data using probability graphs. J. Geochem. Explor. 3,129-149.
 
[26]  Sinclair, A.J., 1976. Application of probability graphs in mineral exploration. Assoc. Explor. Geochem. 4, 95.
 
[27]  Sinclair, A.J., 1991. A fundamental approach to threshold estimation in exploration geochemistry. Probability plots revisited. J. Geochem. Explor. 41,1-22.
 
[28]  Stanley, C.R. and Sinclair, A.J., 1989. Comparison of probability plots and gap statistics in the selection of threshold for exploration geochemistry data. J. Geochem. Explor., 32, 355-357.
 
[29]  Xiao, F. and Chen, J.G., 2012. Fractal projection pursuit classification model applied to geochemical survey data. Computers & Geosciences, 45(10-11), 75-81.
 
[30]  Xu, Y.G., Cheng, Q.M., 2001. A fractalfiltering technique for processing regional geochemical maps for mineral exploration. Journal of Geochemistry: Exploration, Environment, Analysis, 1(2): 147-156.