Journal of Geosciences and Geomatics. 2015, 3(4), 96-108
DOI: 10.12691/JGG-3-4-2
Original Research

Mineral Alteration and Chlorite Geothermometry in Platinum Group Element (PGE)- Bearing Meta-ultramafic Rocks from South East Cameroon

Ako T. A.1, 2, , A. Vishiti1, 3, K. I. Ateh1, A. C. Kedia1 and C. E. Suh1

1Economic Geology Unit, Department of Geology, University of Buea, Buea South West Region, Cameroon

2Department of Geology, Federal University of Technology, Minna, Niger State, Nigeria

3Higher Institute of Science, Engineering and Technology, Cameroon Christian University, Bali, North West Region, Cameroon

Pub. Date: August 14, 2015

Cite this paper

Ako T. A., A. Vishiti, K. I. Ateh, A. C. Kedia and C. E. Suh. Mineral Alteration and Chlorite Geothermometry in Platinum Group Element (PGE)- Bearing Meta-ultramafic Rocks from South East Cameroon. Journal of Geosciences and Geomatics. 2015; 3(4):96-108. doi: 10.12691/JGG-3-4-2

Abstract

The meta-ultramafic rocks that are part of the Paleoproterozoic unit termed the Nyong Series in SE Cameroon were investigated in this study. The lithologic assemblage mapped is exposed on a cliff face and consists of distinguishable horizons that include least, moderately to intensely altered pyroxenite to amphibolite units. The rocks are partially to completely serpenitinized and foliated. The main mineral phases identified under the microscope include pyroxenes (clinopyroxene and orthopyroxene), olivine, hornblende, plagioclase, garnet and sulphides. The rocks depict variable alteration of the pyroxenes and other primary minerals such as olivine to actinolite, chlorite, serpentine, talc, epidote and tremolite. Electron microprobe analysis on chlorite show that the principal chlorite type ranges from talc-chlorite to penninite. Using the chlorite geothermometer it is observed that the hydrothermal alteration temperatures vary between 160-180°C. This has been overprinted by surface temperatures (20 - 40°C) during the process of weathering.

Keywords

meta-ultramafics, intrusive, layered sequence, alteration, serpentinisation, chlorite, South East Cameroon

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ballhaus, C and Ryan, C, G. Platinum-group elements in the Merenskey Reef. 1. PGE in base metal sulfides and the down-temperature equilibrium history of Merensky ores: Contribution to Mineralogy and Petrology, 122 (3), 241-251, 1995.
 
[2]  Barnes, S. J., Fiorentini, M. L. and Fardon, M. C. Platinum group element and nickel sulphide ore tenors of the Mount Keith nickel deposit, Yilgarn Craton, Australia. Mineralium Deposita, 47, 129-150, 2012.
 
[3]  Ebah Abeng, A. S., Ndjigui, P-D., Beyanu, A. A., Tessontsap, T. and Bilong, P. Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo Craton): Implications for Au-PGE exploration. Journal of Geochemical Exploration, 114, 1-19, 2012.
 
[4]  Holwell, D. A., Abraham-James, T., Keays, R. R. and Boyce, A. J. The nature and genesis of marginal Cu-PGE-Au sulphide mineralization in Paleogene Macrodykes of the Kangerlussuaq region, East Greenland. Mineralium Deposita, 47, 3-21, 2012.
 
[5]  Ndema Mbongue, J. L., Ngnotue, T., Ngo Nlend, C. D., Nzenti, J. P. and Cheo Suh, E. Origin and Evolution of the Formation of the Cameroon Nyong Series in the Western Border of the Congo Craton. Journal of Geosciences and Geomatics, 2, (2) 62- 75, 2014.
 
[6]  Tracy, R. J., Robinson, P. and Wolft, R. A. Metamorphosed ultramafic rocks in the Bronson Hill anticlinorium, Central Massachusetts.American Journal of Science, 284, 530-558, 1984.
 
[7]  Jiang, W. T., Peacor, D. R. and Buseck , P. R. Chlorite geothermometry? – Contamination and apparent octahedral vacancies. Clays and Clay Minerals, 42, (5), 593-605, 1994.
 
[8]  Deer, W. A., Howie, R. A. and Zussman, J. An Introduction to the Rock Forming Minerals. Longman, London, 528pp, 1966.
 
[9]  Gemmell, J. B. and Herrmann, W. A special Issue on Alteration associated with volcanic-hosted massive sulfide deposits, and its exploration significance. Economic Geology, 96, (5) 909-912, 2001.
 
[10]  Gifkins, C. C. and Allen, R. L. Textural and chemical characteristics of diagnostic and hydrothermal alteration in glassy volcanic rocks: Examples from the Mount Read Volcanics, Tasmania. Economic Geology, 96, 973-1002, 2001.
 
[11]  Wiewióra, A .and Weiss, Z. Crystallochemical classifications of phyllosilicates based on the unified system of projection of chemical composition:11.The chlorite group. Clay Minerals 25, 83-92, 1990.
 
[12]  De Caritat, P., Hutcheon, I. and Walshe, J. L. Chlorite Geothermometry: A Review. Clays and clay minerals, 41, No.2, 219-239, 1993.
 
[13]  Zang, W, and Fyfe, W. S. Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita, 30, 30-38, 1995.
 
[14]  Vidal, O., Parra, T. and Trotet, F. A thermodynamic model for Fe-Mg aluminous chlorite using data fromphase equilibrium experiments and natural politic assemblages in the 100o to 600oC, 1 to 25 kb range. American Journal of Science, 301,557-592, 2001.
 
[15]  Klein E.L., Harris,C., Giret, A., and Moura ,C.A.V.The Cipoeiro gold deposit, Gurupi Belt, Brazil: Geology,chlorite geochemistry, and stable isotope study. Journal of South American Earth Sciences, 23 , 242-255 2007
 
[16]  ohier, B. A, Akawy, A. and Hassan, I. Role offluid mixing and wallrock sulfidation in gold mineralization at the Semnamine area, central Eastern Desert of Egypt: Evidence from hydrothermal alteration,fluid inclusions and stable isotope data. Ore Geology Reviews, 34, 580-596, 2008.
 
[17]  Zohier, B. A.Microchemistry and stable isotope systematics of gold mineralization in a Gabbro-diorite complex, SE Egypt. Microchemical Journal, 103, 148-157, 2012.
 
[18]  Hey, M. H. A new review of chlorites. The mineralogy magazine and journal of the mineralogical society, 30, (224) 278-292, 1954.
 
[19]  Foster, M. D. Interpretation of the composition and classification of the chlorites. US Geological Survey Professional Paper 414A, 27pp, 1962.
 
[20]  Curtis, C. D., Hughes, C. R. Whiteman, J. A. and Whittle, C. K. Compositional variation within some sedimentary chlorites and some comments on their origin. Mineralogical Magazine, 49, 375-386, 1985.
 
[21]  Hillier, S. and Velde, B. Octohedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites: Clay Minerals, 26, 146-168, 1991.
 
[22]  Cathelineau, M. Cation site occupancy in the chlorites and illites as a function of temperature: Clay Minerals, (23), 471-485.
 
[23]  Schiffmann, P. and Fridleifsson, G. O. The smectite to chlorite transition in drillhole NJ-15, Nesjavellir Geothermal Field, Iceland: XRD, BSE, and electron microprobe investigation: Journal of Metamorphic Geology, 9, 679-696, 1991.
 
[24]  Cathelineau, M. and Nieva, D. A chlorite solid solution geothermometer: The Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology, 91, 235-244, 1995.
 
[25]  Xie, X., Byerly, G. R., Ferrell Jr, R. E. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock compositional constraints with implications to geothermometry. Contributions to Mineralogy and Petrology, 126, 275-291, 1997.
 
[26]  Klein, E. L. and Koppe, J. C. Chlorite geothermometry and physical conditions of mineralization in the Paleoproterozoic Caxias deposit, São Luis Craton, Northern Brazil. Geochimica Brasiliensis, 14(2), 219-232, 2000.
 
[27]  Frimmel, H. E. Chlorite thermometry in the Witwaterstrand Basin: Constraints on the Paleopaleoterozoic geotherm in the Kaapvaal Craton, South Africa. Journal of Geology, 105, 601-615, 1997.
 
[28]  Feybesse, J. L., Barbosa, J., Ledru, P., Guerrot, C., Jahan, V, Trboulet, V., Bouchot, V., Prian, J. P. and Sabaté, P. Paleoproterozoic tectonic regime and makers of the Archaean/proterozoic boundary in the Congo-São Francisco craton. EUG 8, Terra abstracts, 100, 1998.
 
[29]  Lerouge, C., Cocherie, A., Toteu, S. F., Penaye, J., Mile’si. J., Tchameni. R., Nsifa, E. N. Fanning, C. M. and Deloule, E. Shrimp U-Pb Zircon age for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean –Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences, 44, (4-5) 413-427, 2006.
 
[30]  Owona, S. Archaean, Eburnean and Pan-African Features and Relationships in their Junction Zone in the South of Yaounde (Cameroon). Unpublished Ph.D. Thesis, University of Douala, Cameroon, 232pp, 2008.
 
[31]  Owona, S., Schulz, B., Ratschbacher, L., Ondoa, J. M., Ekodeck, G. E., Tchoua, F. M. and Affaton, P. Pan-African Metamorphism evolution in the southern Yaoundé Group (Qubannguide Complex, Cameroon) as revealed by EMP-Monazite dating and thermobarometry of garnet metapelites. Journal of African Earth Sciences, 59, 125-139, 2011.
 
[32]  Pénaye, J., Toteu, S. F., Tchameni, R., Van Schmus, W. R., Tchakounté, J., Ganwa, A., Minyem, D. and Nsifa, E. N. The 2.1 Ga West Central African Belt in Cameroon: extension and evolution. Journal of African Earth Sciences39, 159- 164, 2004.
 
[33]  Maurizot, P., Abessolo, A., Feybesse, A., Johan, V. and Lecomte, P. Etude et prospection minière du sud-Ouest Cameroon. Sythèse des travaux de 1978 á 1995. 85-CMR 066 BRGM, 1986.
 
[34]  Bonhomme, M. G., Gauthier-Lafaye, F. and Weber, F. An example of Lower Proteroizoic sediments: the Francevillian in Gabon. Precambrian Research,18, 87-102, 1982.
 
[35]  Vicat, J. P. and Pouclet, A. Paleo- and Neoproterozoic granitoids and rhyolites from the West Congolian Belt (Gabon, Congo, Cabinda, north Angola): Chemical composition and geotectonic implications. Journal of African Earth Sciences.31,(3 and 4) 597-617, 2000.
 
[36]  Thomas, R. J., Chevallier, L. P., Gresse, P., Harmer, R. E., Eglington, B. M., Armstrong, R. A., DeBeer, C. H., Martini, J. E. J., de Kock, G. S., Macey, P. H. and Ingraham, B. A. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Research, 118, 1-57, 2002.
 
[37]  Toteu, S. F., Pénaye, J., Van Schmus, W. R. and Michard, A. Preliminary U-PB and Sm-Nd geochronologic data on the North Central Cameroon: Contribution of the Archaean and Paleoproterozoic crust to the edification of an active domain of the Pan-African orogeny. C. R. Acad. Sci. Paris, 319, Series II, 1519 -1524, 1994a.
 
[38]  Feybesse, J. L., Johan, V., Maurizot, P. and Abessol, A. Evolution tectono-métamorphique libérenne et éburnéenne á la partie NW du craton zaїrọis (SW Cameroon). Current Research In Africa. Earth Sci., Matheis and Schandelmeier (eds) Balkema, Rotterdam: 9-12, 1986.
 
[39]  Lasserre, M. and Soba, D. Age libérien de granodiorites et des gneiss à pyroxene du Cameroon méridional. Bull. B.R.G.M. 2è série, sectionIV, I, 17-32, 1976.
 
[40]  Mendes J. C. and De Campos C. M. P. Norite and charnockites from the Venda Nova Pluton, SE Brazil: Intensive parameters and some petrogenic constraints. Geoscience frontiers 1(6), 1-12, 2012.
 
[41]  Kranidiotis, P., MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulphide deposit, Matagami,Quebec. Economic Geology 82, 1898-1911,1987.
 
[42]  Gole, J. M. Leaching of S, Cu, and Fe from disseminated Ni-(Fe)-(Cu) Sulphide ore during serpentinization of duinite host rocks at Mount Keith, Agnew- Wiluna belt Western Austrailia . Mineralium Deposita, 49, 821-842, 2014.
 
[43]  Bourdelle, F., Parra, T.,Chopin, C. and Beyssac, O. A new chlorite geothermometer for diagnostic low-grade metamorphic conditions. Contribution to Mineralogy and Petrology, 165, 723-735, 2013.
 
[44]  Fruh-Green, G. L., Connolly J. A. D. and Plus, A. Serpentinisation of oceanic Peridotites: Implication for geochemical cycles and biological activity. American Geophysics Union, Monograph 203, 1-29, 2014.
 
[45]  Eckstrand, O. R. The Dumont Serpentinite: A model for control of Nickel, ferrous opaque mineral assemblages by alteration reactions in ultramafic rocks. Economic Geology, 70, 183-201, 1975.
 
[46]  Winter, J. (2001). An Introduction to Igneous and Metamorphic Petrology. Prentice Hall, New Jersey.
 
[47]  Bowles, J. F. W., Prichard, H. M., Suarez, S. and Fisher, P. C. The first report of platinum-group minerals in magnetite-bearing gabbro, Freetown layered complex, Sierra Leone: Occurrences and genesis. The Canadian Mineralogist, 51(3), 455-473, 2013.
 
[48]  Frost B. R. and Beard, J. S. On silica activity and serpentinisation. Journal of Petrology, 48, 1351-1368, 2007.
 
[49]  Akane, M., Tetsu, K., Naoto I. and Kenji, M. Role of Silica for the Progress of Serpentinization Reactions: Constraints from successive changes in mineralogical textures of Serpentinites from Iwanaidake Ultramafic body, Japan. Mineralogical Society of America, 99, (5-6), 1035-1044, 2014.
 
[50]  Skelton, A. R., Whitmarsh, F. A., Crill, P. and Koyi, H. Constraining the rate and extent of mantle serpentinization from seismic and petrological data: implications for chemosynthesis and tectonic processes: Geofluids, 5, 153-164, 2005.
 
[51]  Lundin, E. R. and Dore, A.G. Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation: Geology, 39, 347-350, 2011.
 
[52]  Perez-Gussinye, M., Morgan, J., Reston, J. T. and Ranero, C. The rift to drift transition at non-volcanic margins: Insights from numerical modeling. Earth and Planetary Science Letters, 244, 458-473, 2006.
 
[53]  Perez-Gussinye, M. and Reston, T. J. Rheological evolution during extension at nonvolcanic rifted margins: On set of serpentinisation and development of detachments leading to continental breakup: Journal of Geophysical Research-Solid Earth, 106, 3961-3975, 2011.