Journal of Geosciences and Geomatics. 2014, 2(1), 11-16
DOI: 10.12691/JGG-2-1-2
Original Research

Integration of Hydrogeological Factors for Identification of Groundwater Potential Zones Using Remote Sensing and GIS Techniques

Lazarus G. Ndatuwong1, 2, and G. S. Yadav1

1Department of Geophysics, Banaras Hindu University, Varanasi, India

2Department of Physics, Adamawa State University, Mubi, Nigeria

Pub. Date: February 06, 2014

Cite this paper

Lazarus G. Ndatuwong and G. S. Yadav. Integration of Hydrogeological Factors for Identification of Groundwater Potential Zones Using Remote Sensing and GIS Techniques. Journal of Geosciences and Geomatics. 2014; 2(1):11-16. doi: 10.12691/JGG-2-1-2

Abstract

Remote sensing data can be used as a reconnaissance and features identification tool for identifying surface and sub-surface water potential zone. The present study has been carried out to evaluate the potential zones for groundwater targeting using an integrated remote sensing data, Survey of India (SOI) topographical sheets and field verification. Four features (geomorphologic units, slope, drainage density and lineaments density) that influence groundwater occurrence were extracted and integrated to evaluate the hydrogeomorphological characteristics of the study area and demarcate the groundwater potential zones. Thematic maps of the extracted features were prepared and integrated through geography information system (GIS) environment. The groundwater potential map was prepared by overlaying the thematic layers. Weightage percentages were assigned to the different parameters according to their relative importance to groundwater potentiality. The integrated map of the area shows different zones of groundwater prospects, viz. very high (0.77% of the area), high (35.57% of the area), moderate (54.53% of the area), while poor and very poor are made up of 9.13% of the area.

Keywords

geomorphologic units, hydrogelogy, remote sensing, GIS, groundwater

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Banks, D., Robins, N., “An introduction to groundwater in crystalline bedrock”. Norges geologiske undersøkelse, Trondheim, p 64. 2002
 
[2]  Zuppi, G.M., “The groundwater challenge. In: Clinic C, Musu I and Gullino M.L (eds). Sustainable development and environmental management. Experience and case studies”, Dordrecht, Springer, 49-64. 2007.
 
[3]  Singh, A.K. and Prakash, S.R., “An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala subwatershed, Mirzapur district, UP, India”, Map India conference. 2003.
 
[4]  Sander, P., Chesley, M.M., Minor, T.B.,“Groundwater assessment using remote sensing and GIS in a rural groundwater project in Ghana: lessons learned”, Hydrogeol J., 4(3). 40-49. 1996.
 
[5]  Oh, H.J., Kim, Y.S., Choi, J.K., Park, E. and Lee, S., GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea” J. Hydrol. 399, 158-172. 2011.
 
[6]  Teeuw, R.M., “Groundwater exploration using remote sensing and a low cost GIS”, Hydrogeol J;3(3):21-30. 1999.
 
[7]  Obi Reddy, G.P., Chandra Mouli, K., Srivastava, S.K., Srinivas, C.V. and Maji, A.K., “Evaluation of ground water potential zones using remote sensing data—a case study of Gaimukh watershed, Bhandra district, Maharashtra”, J Indian Soc. Remote Sens., 28. 19-32. 2000.
 
[8]  Gopinath, G. and E Seralathan, E., “Identification of groundwater prospective zones using IRS-ID LISS III and pump test methods”, J. Indian Soc. Remote Sensing, 32(4), 329-342. 2004.
 
[9]  Meijerink, A.M.J., “Groundwater. In: Schultz, G.A, Engman ET (eds) Remote sensing in hydrology and water management” Springer, Berlin, pp 305-325. 2000.
 
[10]  Hoffman, J. and Sander, P., “Remote sensing and GIS in hydrogeology”, Hydrogeol J., 15(1). 2007.
 
[11]  Jha, M.K., Chowdhury, A. Chowdary, V.M. and Peiffer, S., “Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints”, Int Ser Prog Wat Res., 21. 427-467. 2007.
 
[12]  Jasmin, I. and Mallikarjuna, P., “Review: satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India” Hydrogeol J., 19(4). 729-740. 2011.
 
[13]  Teixeira, J., Chamin, H.I., Carvalho, J.M., Prez-Alberti, A. and Rocha, F., “Hydrogeomorphological mapping as a tool in groundwater exploration” Journal of Maps, 9(2). 263-273. 2013.
 
[14]  Elmahdy, S.I. and Mohamed, M.M., “Groundwater potential modelling using remote sensing and GIS: a case study of the Al Dhaid area, United Arab Emirates”, Geocarto International. Geocarto International, 2013
 
[15]  Nag, S.K. and Ghosh, P., “Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques”, Environ Earth Sci., 2012.
 
[16]  Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., “Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach” Environ Earth Sci., 64, 373-381.2011.
 
[17]  Rashid, M., Ahmad Lone, M. and Ahmed, S., “Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India”, Environ Monit Assess., 2011.
 
[18]  Javeed, A. and Wani, M.H., “Delineation of Groundwater Potential Zones in Kakund Watershed, Eastern Rajasthan, Using Remote Sensing and GIS Techniques”, Journal Geological Society of India, 73. 229-236. 2009.
 
[19]  Rao, P.J., Harikrishna, P., Srivastav, S.K., Satyanarayana. P.V.V. and Vasu Deva Rao, B., “Selection of groundwater potential zones in and around Madhurawada Dome, Visakhapatnam District - A GIS approach”, J. Ind. Geophys. Union, 13(4). 191-200. 2009.
 
[20]  Bose P K, Sarkar S, Chakrabarty S, and Banerjee S., (2001), Overview of Meso- to Neoproterozoic evolution of the Vindhyan basin, Central India. J. Sediment. Geol., 142, pp 395-419.
 
[21]  Krishnan M S.,” Geology of India and Burma”. 6th Ed. CBS publisher, New Delhi, 1982.
 
[22]  Amaresh K. S & Prakash S. R.., “An integreted approach of Remote Sensing, Geophysics and GIS to evaluation of Groundwater potentiality of Ojhala subwatershed, Mirzapur district, U.P., India”, Map India Conference, 2003, Available at http:// www.GISdevelopment.net.
 
[23]  L. G. Ndatuwong and G. S. Yadav., “ Quantitative estimation of natural recharge due to monsoon rainfall using the principle of information theory in the area of Ghorawal block of Sonebhadra district, U.P., India” International Journal of Environmental Sciences, 3, (3), 976-985, 2012.
 
[24]  Ganapuram, S., Vijaya Kumar, G.T., Murali Krishna, I.V., Ercan K. and Demirel, C.M., “Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS”, Advances in Engineering Software, 40. 506-518. 2009.
 
[25]  NRSA., National rural drinking water mission methodology manual for preparation of groundwater prospects maps. National Remote Sensing Agency, Govt. of India, Hyderabad, 1999
 
[26]  Deepika, B., Avinash, K. and Jayappa, K.S., “Integration of hydrological factors and demarcation of groundwater prospect zones: insights from remote sensing and GIS techniques”, Environ Earth Sci., 2013.
 
[27]  Mondal, Md.S., Pandey, A.C. and Garg, R.D., “Groundwater Prospects Evaluation Based on Hydrogeomorphological Mapping using High Resolution Satellite Images: A Case study in Uttarakhand”, J. Indian Soc. Remote Sens., 36. 69-76. 2007.
 
[28]  Sankar, K.,“Evaluation of groundwater potential zones using remote sensing data in Upper Vaigai river basin, Tamil Nadu, India”, J Indian Soc Remote Sensing, 30(30). 119-129. 2002.
 
[29]  Raghu, V. and Reddy, K.M., “Hydrogeomorphological Mapping at Village Level Using High Resolution Satellite Data and Impact Analysis of Check Dams in Part of Akuledu Vanka Watershed, Anantapur District, Andhra Pradesh”, J. Ind. Geophys. Union, 15(1). 1-8. 2011.
 
[30]  Magowe, M., Carr, J.R., “Relationship between lineaments and ground water occurrence in western Botswana”, Ground Water, 37 (2). 282-286. 1999.
 
[31]  Fernandes, A. and Rudolph, D., “The influence of Cenozoic tectonics on the groundwater production capacity of fractured zones: a case study in Sao Paulo, Brazil” Hydrogeol J., 9. 151-167. 2001.
 
[32]  Hardcastle, K., “Photolineament factor: a new computer-aided method for remotely sensing the degree to which bedrock is fractured. Photogramm” Eng Remote Sensing, 61(6). 739-747. 1995.
 
[33]  Sreedevi, P.D., Owais, S., Khan, H.H. and Ahmed, S., “Morphometric Analysis of a Watershed of South India Using SRTM Data and GIS”, J. Geological Society of India 73, 543-552. 2009.
 
[34]  Agarwal, E., Agarwal, R., Garg, R.D. and Garg, P.K., 2013. Delineation of groundwater potential zone: An AHP/ANP approach. J. Earth Syst. Sci. 122(3), 87-898.
 
[35]  Nag, S.K., “Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Prulia district, West Bengal”, Jour. Indian Soc. Remote Sensing, 33, 521-529. 2005.
 
[36]  Narendra, K., Nageswara Rao, K.N. and Swarna latha, P. “Integrating Remote Sensing and GIS for Identification of Groundwater Prospective Zones in the Narava Basin, Visakhapatnam Region, Andhra Pradesh”, Journal Geological Society of India, 81. 248-260. 2013.
 
[37]  IMSD., 1995 Integrated mission for sustainable development technical guidelines. National Remote Sensing Agency, Department of Space, Govt. of India.