Journal of Geosciences and Geomatics. 2023, 11(3), 88-96
DOI: 10.12691/JGG-11-3-3
Original Research

Atmospheric Water Vapour Determination Using Gps Signals for Numeric Weather Prediction in Tanzania

Mlawa, A.1 and Saria, E. E1,

1Department of Geospatial Sciences and Technology (DGST), School of Earth Sciences Real Estate Business and Informatics (SERBI), Ardhi University, Dar Es Salaam, Tanzani

Pub. Date: November 06, 2023

Cite this paper

Mlawa, A. and Saria, E. E. Atmospheric Water Vapour Determination Using Gps Signals for Numeric Weather Prediction in Tanzania. Journal of Geosciences and Geomatics. 2023; 11(3):88-96. doi: 10.12691/JGG-11-3-3

Abstract

Atmospheric water vapour (AWV) is one of the parameters that affect GNSS signals in the troposphere, however this parameter is very important conservatory gas which helps to maintaining Earth’s energy balance and the hydrological cycle. The AWV is one of the fundamental meteorological parameter in numeric weather prediction. In many years this parameter has been computed using conventional methods including radiosondes, microwave radiometer, and hygrometers. However, these methods are facing numerous challenges including inadequacy, low spatial and temporal resolution and high maintenance cost. Given the high investment required and maintenance cost, the Tanzania Meteorological Agency (TMA) had only four radiosondes across the country. With advances in technology Global Navigation Satellite system (GNSS) are replacing the conventional methods due to its capability to determine Precipitable Water (PW) or Integrated Water Vapour (IWV) at low cost. The aim of this study is to use a yearlong GNSS data from Dodoma CORS station in Tanzania to compute PW or IWV and compare with global weather models. The results from this comparison will help TMA to decide on better methods for weather prediction. In this study, the datasets were processed using gLAB and GAMIT/GLOBK software based on two processing strategies weather free and weather dependent approaches. The results from this processing were analyzed against Global weather model particularly the products from ECMWF Reanalysis - Interim (ERA-Interim). The result shows that GNSS results from gLAB and GAMIT/GLOBK have good agreement with a correlation <0.98 while between GNSS and the ERA-Interim model values shows a correlation <0.96. Given these correlations, this study provides great indication of how GNSS data can be used to retrieve the key meteorological values for weather prediction in Tanzania and provide great assistance to the Tanzania Meteorological Agency (TMA).

Keywords

GNSS meteorology, Atmospheric water Vapour, Numeric Weather Prediction

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Wolfe, D.E. and Gutman, S.I. (2000). Development of the NOAA/ERL Ground-Based GPS Water Vapor Demonstration Network: Design and initial results. Journal of Atmospheric and Oceanic Technology, 17, pp. 426-440.
 
[2]  Acheampong, A. A., Fosu, C., Amekudzi, L. K., Kaas, E (2017), Precipitable Water Comparisons Over Ghana using PPP Techniques and Reanalysis Data. South African Journal of Geomatics, Vol. 6. No. 3.
 
[3]  Bevis, M., S. Businger, T.A. Herring, C. Rocken, R.A. Anthes, and R.H. Ware, GPS Meteorology: Remote sensing of atmospheric using the Global Positioning System, Journal of Geophysical Research, 97, 15,787-15,801, 1992.
 
[4]  Solheim F. S, J. Vivekanandan, R. Ware and C Rocken (1999), Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates, J. Geophys. Res., 104, 9663–9670.
 
[5]  Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2009a) Influence of ionospheric perturbations in GPS time and frequency transfer. Adv Space Res 45(9): 1101–1112. Special issue: recent advances in space weather monitoring, modelling, and forecasting, 3 May 2010, ISSN 0273-1177.
 
[6]  Seeber G.: Satellite geodesy, 2nd edition, Walter de Gruyter Berlin New York, 2003
 
[7]  Herring, T. A., R.W. King, and S. C.McClusky (2015), Documentation for the GAMIT GPS software analysis, release 10.71, Mass. Inst. of Technol. Cambridge.
 
[8]  Zumberge, J., M. Heflin, D. Jefferson, M. Watkins, and F. Webb (1997), Precise Point Positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102, 5005–5017.
 
[9]  Bevis, M., S. Businger, S. Chiswell, T.A. Herring, R.A. Anthes, C. Rocken, and R.H. Ware, GPS Meteorology: Mapping zenith wet delays onto precipitable water, Journal of Applied Meteorology, 33, 379-386, 1994.
 
[10]  Liou, K., Meng, C.-I., Newell, P.T., Lui, A.T.Y., Reeves, G.D. and Belian, R.D. (2001). Particle injections with auroral expansions. Journal of Geophysical Research 106.
 
[11]  Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P.,Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer,P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J.,Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J.,Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isak-sen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P.,Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., deRosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F. (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597.
 
[12]  Subriana, J. S., Zornoza, J. M. J., and Hern´andez-Pajares, M. (2013). GNSS Data Processing, Vol 1: Fundamentals and Algorithms. ESA Communications, Noordwijk, the Netherlands.
 
[13]  Niell, A.E. (1996). Global mapping functions for the atmospheric delay at radio wavelengths. J. Geophys. Res., 101, pp. 3227-3246.
 
[14]  Dong, D., J. O. Dickey, Y. Chao, and M. Cheng (1997), Geocenter variations caused by atmosphere ocean and surface ground water, Geophys. Res. Lett., 24, 1867– 1870.
 
[15]  McClusky S. et al., 2000. GPS constraints on plate motions and deformations in eastern Mediterranean and Caucasus, J. geophys. Res., 105, 5695–5719.
 
[16]  Nocquet, J. M., P. Willis, and S. Garcia (2006), Plate kinematics of Nubia-Somalia using a combined DORIS and GPS solution, J. Geod., 80,591–607
 
[17]  Stamps, D. S., E. Calais, E. Saria, C. Hartnady, J. M. Nocquet, C. Ebinger,and R. Fernandez (2008), A kinematic model for the East African Rift, Geophys. Res. Letters, 35, L05304.
 
[18]  Saria, E., E. Calais, Z. Altamimi, P. Willis, and H. Farah (2013), A new velocity field for Africa from combined GPS and DORIS space geodetic solutions: Contribution to the definition of the African reference frame (AFREF), J. Geophys. Res. Solid Earth, 118, 1677–1697.
 
[19]  Schmid, R., P. Steigenberger, G. Gendt, M. Ge, and M. Rothacher (2007), Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas, J. Geod., 81, 781–798.
 
[20]  Lyard, F., F. Lefevre, and T. Letellier (2006), Modelling the global ocean tides: Modern insights from FES2004, Ocean Dyn., 56(5–6), 394–415.
 
[21]  Cohen, J., Cohen P., West, S.G., and Aiken, L.S. (2002). Applied multiple regression / correlation analysis for the behavioral sciences (3rd ed.). Psychology Press. ISBN 0-8058-2223-2.
 
[22]  Bock, O., et al. (2008), The West African Monsoon observed with groundbased GPS receivers during AMMA, J. Geophys. Res., 113, D21105.