Journal of Geosciences and Geomatics. 2022, 10(3), 162-171
DOI: 10.12691/JGG-10-3-5
Original Research

Geotechnical Properties and Geochemical Composition of Mudrock from the Douala Sub Basin, Cameroon: Implication for Industrial Potentials

Ndengwe Alexander Tangwa1, , Njoh Oliver Anoh1 and Nowel Yinkfu Njamnsi1

1Department of Geology, Mining and Environmental Science, University of Bamenda

Pub. Date: December 12, 2022

Cite this paper

Ndengwe Alexander Tangwa, Njoh Oliver Anoh and Nowel Yinkfu Njamnsi. Geotechnical Properties and Geochemical Composition of Mudrock from the Douala Sub Basin, Cameroon: Implication for Industrial Potentials. Journal of Geosciences and Geomatics. 2022; 10(3):162-171. doi: 10.12691/JGG-10-3-5

Abstract

The geotechnical and compositional characteristics of mudrock deposits in the Douala Sub basin were investigated using a combination of analytical methods, including particle size distribution, Atterberg limits, mineralogical (X-ray diffraction) analyses, and whole rock geochemistry. The goal is to characterize the nature and physicochemical properties of mudrock in order to determine its applicability in industries. Grain size analysis reveals that clay-sized particles dominate the samples, with a plasticity index ranging from 6.8% to 20.67%. The mudrock materials are primarily composed of kaolinite (16.8-49.4%), quartz (15.8-68.9%), and illite (00-15.3%), which are typical of the Douala Sub- basin sedimentary environment and morphoclimatic conditions. SiO2 (42.77-73.5%) and Al2O3 (13.13-29.98%) are the most abundant oxides in the samples. Iron oxide content is moderate (1.73- 17.18%). Methylene blue values range from 1.12 to 6.95, confirming the clay content of (39.43-45.43%) and also attesting that the sediments in the study area are rich in 1:1 clay. They are suitable for ceramic applications such as (refractory bricks and tiles) and pottery due to the physicochemical parameters associated with mineralogical and geochemical data

Keywords

Mudrock, clay mineral, characterization, valorisation, Douala Sub basin Cameroon

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Lee.V.G; Yeh. T.H. Sintering effects on the development of mechanical properties of fired clay ceramics. Mat. Sci. eng. A. 2008 485, 5-13.
 
[2]  Logmo, E.O., Ngon Ngon, G.F., Samba, W., Mbog, M. B., Etame, J., Geotechnical, mineralogical and chemical characterisation of the Missole II clayey materials of Douala Sub-Basin (Cameroon) for construction materials. Open Journal of Civil Engineering 3,2013, 46-53
 
[3]  Ngon Ngon, G.F., Etame, J., Ntamak-Nida, M.J., Mbog, M.B., Maliengoue Mpondo, A.M., Yongue-Fouateu, R., Bilong, P., Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry. Comptes Rendus Geoscience 344, 2012, 366-376
 
[4]  Celik. H.Technological characterization and industrial application of two Turkish clays, for ceramic industry. Appl Clay Sci. 2010, 50, 245-254.
 
[5]  Nkoumbou.C; Njoya. A; Njopwouo. D; Wandji.R. Intérêt économique des matériaux argileux au Cameroun. Proceedings of the first conference on the valorization of clay materials in Cameroon, and launching of the Cameroonian clay group. Yaoundé, April 11-12, 2001.
 
[6]  Baccour.H; Medhioub.M; Jamoussi.F; Mhiri. T. Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. J. Mater. Process. Technol 2009, 2812-2817
 
[7]  Brownfield, M.E., Charpentier, R.R. Geology and total petroleum systems of the West-Central Coastal Province (7203) West Africa. US Geol. Surv. Bull. 2006, 2207-B 52 p.
 
[8]  Manga, C.S., 2008. Stratigraphy, structure and prospectivity of the southern onshore Douala Basin Cameroon-Central Africa. In: Ntamak-Nida,M.J., Ekodeck, G.E., Guiraud, M. (Eds.). Cameroon and neighbouring basins in the Gulf of Guinea (Petroleum Geology tectonics Geophysics Paleontology and Hydrogeology). African Geosci. Rev. Spec. Publ. 1 &2, 2008, 13-37.
 
[9]  Meyers, J.B., Rosendahl, B.R., Groschel-Becker, H., 1996. Deep penetrating MCS imaging of the rift-to-drift transition offshore Douala and North Gabon basins West Africa. Marine Petrol. Geol. 1996, 13, 791-835.
 
[10]  Nguene, F.R., Tamfu, S., Loule, J.P., Ngassa, C.,. Paleoenvironnements of the Douala and Kribi/Campo subbasins in Cameroon, West African. Geologie africaine: colloque de Geologie africaine, Libreville, recueil des communications, 6-8 May 1991, pp. 129-139.
 
[11]  Thibaut, P.M., Le Berre, P., 1985. Recherche d’argiles pour briques dans la region de Yaounde´, Douala et Edea. Rapport 85CM065.
 
[12]  Gilbert Francois Ngon Ngona, Jacques Etame, Marie Joseph Ntamak-Nida,Michel Bertrand Mbog, Anne Maureen Maliengoue Mpondoa, Martine Gerard, Rose Yongue-Fouateuc, Paul Bilonga ; Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry. C. R. Geoscience 344 (2012) 366-376.
 
[13]  Njopwouo, D., Kong, S., 1986. Minéralogie de la fraction fine des matériaux argileux de Bomkoul et de Balengou (Cameroun). Annales de la Faculté´ des Sciences, Serie des Sciences Chimiques. 1986, I 1-2, 17-31.
 
[14]  Njopwouo, D., Wandji, R. Minéralogie de l’argile kaolinique de Bomkoul (Cameroun). Revue de Sciences et Technique, Série des Sciences de la Terre, I 3-4, 1985, 71-81.
 
[15]  Elimbi, A., Njopwouo, D., 2002. Firing characteristics of ceramics from the Bomkoul kaolinite clay deposit (Cameroon). Tile and Brick International. 200218 (6), 364-369
 
[16]  Mbog, M.B., 2010. Étude morphologique, physico-chimique et minéralogique des argiles de Bomkoul dans le sous-bassin sédimentaire de Douala-Cameroun. Mémoire, DEA, Faculté´ des Sciences, Université de Douala, 60 p.
 
[17]  Kankao Oumar Oumla, Ngon Ngon Gilbert François, Tehna Nathanael, Bayiga Elie Constantin, Mbog Michel Bertrand, Mbaï Joel Simon, and Etame Jacques, “Physicochemical and Mineralogical Characterization of Clay Materials in the Douala Coastal Sedimentary Sub-basin (Cameroon, Central Africa).” Journal of Geosciences and Geomatics, vol. 10, no. 3 (2022): 126-138.
 
[18]  Lawrence, S.R., Munday, S. and Bray, R., Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). The Leading Edge, 2002, 1113-1117.
 
[19]  Nguene, F.R., Tamfu, S., Loule, J.P., Ngassa, C. Paleoenvironnementsof the Douala and Kribi/Campo subbasins in Cameroon, West African. Geologie africaine : colloque de Geologie africaine, Libreville, recueildes communications, 6-8 May 1991, pp. 129-139.
 
[20]  Ngueutchoua G, Ngantchu L D, Youbi M, Ngos III, S, Beyala, V K K Yifomju, K P and Tchamgoué J C. Geochemistry of Cretaceous Mudrocks and Sandstones from Douala Sub-Basin, Kumba Area, South West Cameroon: Constraints on Provenance, Source Rock Weathering, Paleo-Oxidation Conditions and Tectonic Environment. International Journal of Geosciences. 2017, 8, 393 424.
 
[21]  Jean-Pierre Loule, Francis Jifon, Serge Edouard Angoua Biouele, Ponce Nguema David Spofforth, Daniel Carruthers, Carl Watkins and Joe Johnston.An opportunity to re-evaluate the petroleum potential of the Douala/Kribi-Campo Basin, Cameroon. Special topic: petroleum geology. 2018.
 
[22]  Dupain, R., Lanchon, R. and Saint Arroman, J.C., Granulats, sols, ciments et betons: caracteriqation des materiaux de genie civil par les essais de laboratoire nouvelle Edi., Ecole francaise du beton, col., A, Capliez. 2000, 236p.
 
[23]  Moore Duane, M., Reynolds, R.Jr.C., X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, 1989.
 
[24]  Abdelmalek, B., Bouazi, R., Bouftouha, Y., Bouabsa, L., Fagel, N., Mineralogical characterization of neogene clay areas from the Jijel basin for ceramic purposes (NE Algeria-Africa). Applied Clay Science, 136, 2017, 176-183.
 
[25]  Dondi, M., Fabbri, B. and Guarini, G., Grain-size distribution of Italian raw materials for building clay products: a reappraisal of the Winkler diagram. Clay Minerals 33, 1998, 435-442.
 
[26]  Hubadillah, S.K., Haruna, Z., Othman, M.H.D., Ismail, A.F., and Gani, P. Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique. Journal of Asian Ceramic Societies. 2016 4: 16 4-177.
 
[27]  L. Cere and F. Mazel, “Caractérisation d’Argiles,” ENSCI Limoges, 1993.
 
[28]  N. Française, “Sols: Reconnaissance et Essais. Description-Identification-Dénomination des Sols,” XP P94-011, 1999.
 
[29]  Richer de Forges, A., Feller, C., Jamagne, M., Arrouays, D., Perdus dans le triangle des textures. Étude et Gestion des Sols 15(2), 2008, 97-111.
 
[30]  Winkler, H.G.F., Bedeutung der korngrössenverteilung und de mineralbestandes von tonen für die herstellung grobkeramischer erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 1954, 337-343.
 
[31]  Casagrande, A., Plasticity chart for the classification of cohesive soils. Transactions, American Society of Civil Engineers, 1948, 113, 901.
 
[32]  Abajo Manual sobre Fabrication des Baldosas MF., Manual sobre Fabrication des Baldosas, 2000, Tejas y Ladriolos. In: Beralmar, S.A. (Ed.). Barcelona.
 
[33]  Elimbi, A., Tchakoute, H.K. and Njopwouo, D., Effects of Calcination Temperature of Kaolinite Clays on the Properties of Geopolymer Cements. Construction and Building Materials, 25, 2011, 2805-2812.
 
[34]  McNally, G.H., Soil and Rock Construction Materials, 1998, 291-310. London: CRC Press.
 
[35]  Abdullahi, Y., Ali, E.A. and Oyeyemi, S., A Study of the Physico Chemistry and Mineralogy of Agbaja Clay for Its Industrial Application. Chemical Journal 3, 2012, 5360.
 
[36]  Bain, A.J., Composition and properties of clays used in various fields of ceramics: Part I. Ceramic Forum International 62, 1986, 536-538.
 
[37]  Tsozué, D., Nzeukou, N.A., Maché, J.R., Loweh, S., Fagel, N., Mineralogical, Physico-Chemical and Technological Characterization of Clays from Maroua (Far-North, Cameroon) for Use in Ceramic Bricks Production. Journal of Building Engineering 11, 2017, 17-24.
 
[38]  Anger, R., Fontaine, L., Houben, H., Doat, P., Van Damme, H., Olagnon, C., Jorand, Y., La terre, un béton comme les autres ? Quelques mécanismes de stabilisation du matériau terre. In: Rainer, L., et al., Eds., Terra 2008: The 10th International Conference on the Study and Conservation of Earthen Architectural Heritage, Getty Publications, Bamako, 2011, 222.
 
[39]  Kagonbé, B.P., Tsozué, D., Nzeukou, A.N. and Ngos III, S., Mineralogical, Geochemical and physico-chemical caracterization of clay raw materials from three clay deposits in northern Cameroon, Journal of Geoscience and Environment Protection 9,2021, 86-99.
 
[40]  Ngon Ngon, G.F., Abomo, P.S., Mbog, M.B., Mbabi Bitchong, A., Mbaï, J.S., Ngonlep Minyemeck, T.V., Yongue Fouateu, R., Geological, mineralogical and geochemical studies of pyrite deposits in the eastern part of Douala sub-basin (Cameroon, central Africa). International Journal of Geosciences 6, 2015, 1-12.
 
[41]  Mathieu, C. and Lozet, J., Dictionnaire encyclopédique de science du sol: Avec index anglais-français, 2011, Lavoisier, Paris.
 
[42]  Nesbitt, H.W and Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Cosmochimica Acta 48, 1984, 1523-1534.
 
[43]  Nzeukou Nzeugang, A., Tsozué, D., Kagonbé, P.B., Balo Madi, A., Fankam, D., Ngos III, S., Nkoumbou, C., Fagel, N., Clayey soils from Boulgou (North Cameroon): geotechnical, mineralogical, chemical characteristics and properties of their fred products, SN Applied Sciences 3, Article No. 551, 2021.
 
[44]  Ndjigui, P. D., Onana, V.L., Sababa, E. and Bayiga, E.C., Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment, Journal of African Earth Sciences 143, 2018, 102-117.
 
[45]  A. Djedid, A. Bekkouche and A. M. Aissa Mamoune, “Identification and Prediction of the Swelling Behavior of Some Soils from the Tlemcen Region of Algeria,” Bulletin des Laboratoires des Ponts et Chaussées, Vol. 233, 2001, pp. 69-77.
 
[46]  Fiori, C., Fabbri, B., Donati, G. and Venturi, I., Mineralogical composition of the clay bodies used in the Italian Tile Industry. Applied Clay Science 4, 1989, 461-473.
 
[47]  Allo. W.A; Murray. H.H. (2004). Mineralogy, chemistry, and potential applications of bentonite in San Juan Province, Argentina. Appl Clay Sci. 25, 237-243.
 
[48]  Bain JA, Highley DE. Regional appraisal of clay resources. A challenge to the clay mineralogist. Dev Sedimentol. 1979 27:437-446.
 
[49]  C. A. Jouenne, “Traité de Céramiques et Matériaux Mineraux,” Septima, Paris, 1990.
 
[50]  McManus J (1988) Grain size distribution and interpretation. In: Tucker ME (ed) Techniques in sedimentology. Blackwell Scientific Publications, Oxford, pp 63-857(3): 887-889.
 
[51]  Nzeukou Nzeugang, A., Medjo Eko, R., Fagel, N., Kamgang Kabeyene, V., Njoya, A., Balo Madi, A., Mache, J.R., Melo Chinje, U., Characterization of clay deposits of Nanga Eboko (Central Cameroon): Suitability in the production of building materials. Clay Minerals 48, 2013, 655-662.
 
[52]  O. Castelein, “Influence dela Vitesse du Traitement Thermique sur le Comportement d’un Kaolin: Application au Frottage Rapide,” Thèse, Université de Limoges, 2000.
 
[53]  V. Rigassi, “Bloc de Terre Comprimée,” Manuel de Prospection, Vol. 1, Craterre EAG, 1995.