Journal of Geosciences and Geomatics. 2022, 10(3), 126-138
DOI: 10.12691/JGG-10-3-2
Original Research

Physicochemical and Mineralogical Characterization of Clay Materials in the Douala Coastal Sedimentary Sub-basin (Cameroon, Central Africa)

Kankao Oumar Oumla1, Ngon Ngon Gilbert François1, 2, , Tehna Nathanael3, Bayiga Elie Constantin1, Mbog Michel Bertrand4, Mbaï Joel Simon1 and Etame Jacques1

1Department of Earth Sciences, Faculty of Science, University of Douala, Cameroon

2School of Geology and Mining Engineering, University of Ngaoundere, Cameroon

3Department of Earth Sciences, Faculty of Science, University of Yaoundé I, Cameroon

4Department of Earth Sciences, Faculty of Science, University of Dschang, Cameroon

Pub. Date: July 17, 2022

Cite this paper

Kankao Oumar Oumla, Ngon Ngon Gilbert François, Tehna Nathanael, Bayiga Elie Constantin, Mbog Michel Bertrand, Mbaï Joel Simon and Etame Jacques. Physicochemical and Mineralogical Characterization of Clay Materials in the Douala Coastal Sedimentary Sub-basin (Cameroon, Central Africa). Journal of Geosciences and Geomatics. 2022; 10(3):126-138. doi: 10.12691/JGG-10-3-2

Abstract

This study is focused on the physicochemical and mineralogical characterization of five different clay materials of Eastern part of Douala sub-basin. It aims to know the nature and geotechnological properties of the clay raw materials in order to raise the idea of their potentialities in industrial applications. The samples were subjected to several analyses such as geotechnical tests notably the particle size distribution, the Atterberg limits, the swelling index, the chemical (cation exchange capacity, pH-H2O and pH-KCl, X-ray fluorescence) and mineralogical (X-ray diffraction) analyses. These clay materials showed high fine fractions (up to 99%) and high plasticity index (15 to 63%). The swelling index is medium (16 to 20) and the CEC moderate (30 - 40), indicating the presence of a small proportion of swelling 2:1 type clays. The clay materials are predominantly constituted by kaolinite (32 – 72%), quartz (20.2 - 50.7%) and illite (4.6 – 10%), which are characteristic of the sedimentary environment and morphoclimatic conditions of the Douala coastal sedimentary sub-basin. The predominant oxides in clay materials are SiO2 (34.05 - 51.18%) and Al2O3 (16.05 - 23.98%). Iron oxide Fe2O3 is moderate (1.55 - 11.22%) and alkali and alkaline earth oxides are weak less than 2%. The physicochemical parameters associated with mineralogical and geochemical data make them suitable for ceramic applications and also serve as backfilling materials in building constructions when improved by adding sand.

Keywords

clay materials, Douala coastal sedimentary sub-basin, mineralogical, physicochemical, Cameroon

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Meunier, A., Argiles.Collection géosciences, 2003, 434p.
 
[2]  Njopwouo, D., Roques, G. and Wandji R, A contribution to the study of the catalytic action of clays on the polymerisation of styrene: Charaterization of polystyrenes. Clay Minerals 22(1), 1987, 145-156.
 
[3]  Kamga, R., Nguetnkam, J.P. and Villeras, F, Characteristics of NorthCameroonclays in view of their use in vegetable oil discoloration. In Proceedings of the First Conference on the Valorization of Clay Minerals in Cameroon, 2001, 247-257.
 
[4]  Yeliz, Y.A. and Abidin, K, Dependance à la methode des relations entre la surface specifiques et les proprietés physico-chimiques du sol. Sciences de l’argile appliquée 50 (2), 2010, 182-190.
 
[5]  Allègre, J, Les silicates d'alumine (argiles) en thérapeutique une pratique coutumière ancienne relayée dans la médecine moderne, Thèse de médecine, Université de Paris XIII, Faculté de médécine de Bobigny, 2012, 96p.
 
[6]  Cerato, A.B. and Lutenegger, A.J, Determination of surface Area of fine grained Soils by the ethylene glycol Monoethyl Ether (EGME) method. ASTM GeotechnicalTesting Journal (GTJ), 25 (3), 2002, 315-321.
 
[7]  Njike Ngaha, P.R., Contribution à l’étude géologique, stratigraphique et structurale de la bordure du basin atlantique du Cameroun. Thèse 3ème cycle, Université de Yaoundé, 1984, 131p, Unpublished thesis.
 
[8]  Nguetnkam, J.P., Les argiles des vertisols et les sols fersiallitiques de l’Extrême-Nord du Cameroun: Genèse, propriétés cristallochimiques et texturales typologie et applications à la décoloration des huiles végétales. Thèse de Doctorat d’Etat de l’Université de Yaoundé I. 2004, 218p, Unpublished thesis.
 
[9]  Nkoumbou, C., Njopwouo, D., Villiéras, F., Nj, A., Yonta, N. C., Ngo Njock, L., Yvon, J., Tchoua F.M., Geological study and physico-chemical Characteristics of Talc of Boumnyebel (Centre-Cameroon). Journal of African Earth Sciences 54, 2006, 61-73.
 
[10]  Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya D., Courtin N.A., Yvon J., Martin, F., Genesis of Mayouom kaolin deposit (West Cameroon). Applied Clay Science 32, 2006, 125-140.
 
[11]  Ngon Ngon, G.F., Abomo, P.S., Mbog, M.B., Mbabi Bitchong, A., Mbaï, J.S., Ngonlep Minyemeck, T.V., Yongue Fouateu, R., Geological, mineralogical and geochemical studies of pyrite deposits in the eastern part of Douala sub-basin (Cameroon, central Africa). International Journal of Geosciences 6, 2015, 1-12.
 
[12]  Ndjigui, P. D., Onana, V.L., Sababa, E. and Bayiga, E.C., Mineralogy and geochemistry of the Lokoundje alluvial claysfrom the Kribi deposits, Cameroonian Atlantic coast: Implications for theirorigin and depositional environment, Journal of African Earth Sciences 143, 2018, 102-117.
 
[13]  Mbabi Bitchong, A., Adatte, T., Ngon Ngon, G.F., Ngos III, S., Bilong, P., Palynology, mineralogy and geochemistry of sediments in Tondè locality, northern part of Douala sub-basin, Cameroon, Central Africa: implication on paleoenvironment, Geosciences Journal 25 (3), 2020, 299-319.
 
[14]  Njopwouo, D. and Wandji, R, Minéralogie et comportement de quelques argiles camerounaises au renforcement du caoutchouc naturel par voie humide. Annales de la Faculté des Sciences, Université de Yaoundé I, Série Chimie, 2(1-2), 1988, 187-199.
 
[15]  Elimbi, A. and Njopwouo, D., Firing characteristics of ceramics from the Bomkoul kaolinitic clay deposit (Cameroun). Tile& Brick International 18, 2002, 364-369.
 
[16]  Djangang, C.N., Elimbi, A., Lecomte, G.L., Soro, J., Nkoumbou, C., Yvon, J., Blanchart, P., Njopwouo, D., Refractory ceramics from clays of Mayouom and Mvan in Cameroon. Applied Clay Science 39 (1-2) 2008, 10 -18.
 
[17]  Mbog, M.B., Caractérisations Géophysique, Physico-chimique, MinéralogiqueetGéochimique des argiles de Bomkoul et de Ngoma dans le sous bassin de Douala, Cameroun, Thèse de Doctorat/Ph.D, Faculté des Sciences, Université de Douala 2016, 171p. Unpublished thesis.
 
[18]  Ngon Ngon, G. F., Lecomte Nana, G.L., Yongue Fouateu, R., Lecomte, G., Bilong, P., Physicochemical and mechanical characterisation of ceramic materials obtained from a mixture of silica, feldspars and clay material of the Douala region in Cameroon (Central Africa), Advances in Ceramic Science and Engineering (ACSE) 2 (1), 2013, 23-31.
 
[19]  Logmo, E.O., Ngon Ngon, G.F., Samba, W., Mbog, M. B., Etame, J., Geotechnical, mineralogical and chemical characterisation of the Missole II clayey materials of Douala Sub-Basin (Cameroon) for construction materials. Open Journal of Civil Engineering 3, 2013, 46-53.
 
[20]  Kagonbé, B.P., Tsozué, D., Nzeukou, A.N. and Ngos III, S., Mineralogical, Geochemical and physico-chemical caracterization of clay raw materials from three clay deposits in northern Cameroon, Journal of Geoscience and Environment Protection 9, 2021, 86-99.
 
[21]  Bukalo N.N., Ekosse, G. I., Odiyo J. O., Ogola, J. S., Geochemistry of Selected Kaolins from Cameroon and Nigeria. Open Geoscience 9(1), 2017, 407-418.
 
[22]  Bukalo, N.N., Ekosse, G.E., Odiyo, J.O. and Ogola, J.S., Mineralogical characteristics of cretaceous-tertiary kaolins of the Douala sub-basin, Cameroon. Journal of African Earth Science 141, 2018, 130-147.
 
[23]  Ngon Ngon, G.F., Etame, J., Ntamak-Nida, M.J., Mbog, M.B., Maliengoue Mpondo, A.M., Yongue-Fouateu, R., Bilong, P., Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry. Comptes Rendus Geoscience 344, 2012, 366-376.
 
[24]  Ngon Ngon, G.F., Mbabi Bitchong, A., Mbaï, J.S., Ngos III, S., Yongue Fouateu, R., Bilong, P., Geochemistry of pyriteous mudrocks of the cenozoic N’Kapa formation in Douala Sub-basin, western Cameroon (Central Africa): source rock weathering, provenance, paleo-redox conditions and tectonic settings. Journal of African Earth Sciences 156, 2019, 44-57.
 
[25]  Regnoult, J.M., Synthèse Géologique du Cameroun DMG. Yaoundé, 1986, 199 p.
 
[26]  Nguene, F.R., Tamfu, S., Loule, J.P. and Ngassa, C., Paleoenvironment of the Douala and Kribi / Campo subasins in Cameroon West Africa. In Curnelle, R. ed., Géologie Africaine, 1 ier Coll. de stratigraphie et paléogéographie des bassins sédimentaires ouest africains, 2ème coll. africain de micropaléont, Libreville, 1001, Boussens, Elf Aquitaine, 1992, 129-139.
 
[27]  Lawrence, S.R., Munday, S. and Bray, R., Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). The Leading Edge, 2002, 1113-1117.
 
[28]  Ntamak-Nida, M.J., Baudin, F., Schnyder, J., Makong, J.C., Komguem, P.B., Abolo, G.M., Depositional environments and characterization of the organic matter of the Lower Mundeck Formation (Barremian ? -Aptian) of the Kribi Campo sub-basin (South Cameroon) : implications for petroleum exploration. Journal of African Earth Sciences 51, 2008, 207-219.
 
[29]  SNH/UD., Stratigraphie séquentielle et tectonique des dépôts mésozoïques synrifts du Bassin de Kribi/Campo. M.J. Ntamak-Nida, B. Ketchemen-Tandia, J.E. Mpesse, S. Ndong Ondo, P. Courville, F. Baudin, Rapport inédit, 2005, 134p, 11 planches, 02 Rap. Annexes d’analyses.
 
[30]  Beauvais, A., Geochemical balance of lateritization processes and climatic signatures in weathering profiles overlain by ferricretes in Central Africa. Geochimica Cosmochimica Acta 63, 1999, 3939-3957.
 
[31]  Ndjigui, P.D., Badinane, M.F.B., Nyeck, B., Nandjip, H.P.K., Bilong, P., Mineralogical and geochemical features of the coarse saprolite developed on orthogneiss in the SW of Yaoundé, South Cameroon. Journal of African Earth Sciences 79, 2013, 125-142.
 
[32]  Onana, V.L., Ntouala, R.F.D., Noa Tang, S., Ndome Effoudou, E., Kamgang Kabeyene, V., Ekodeck, G.E., Major, trace and REE geochemistry in contrasted chlorite schist weathering profiles from Southern Cameroon: influence of the Nyong and Dja Rivers water table fluctuations in geochemical evolution processes. Journal of African Earth Sciences 124, 2016, 371-382.
 
[33]  Dupain, R., Lanchon, R. and Saint Arroman, J.C., Granulats, sols, ciments et betons: caracteriqation des materiaux de genie civil par les essais de laboratoire.nouvelle Edi., Ecole francaise du beton, col., A, Capliez. 2000, 236p.
 
[34]  Kjeldahl, J., New method for the determination of nitrogen. Chemistry New 48 (1240), 1883, 101-102.
 
[35]  Walkley, A. and Black, I.A., An examination of method for determining soil organic matter and proposed modification of the chromicacid titration method. Soil Science, 37, 1994, 29-37.
 
[36]  Moore Duane, M., Reynolds, R.Jr.C., X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, 1989.
 
[37]  Fagel, N., Boski, T., Likhoshway, L. and Oberhaensli, H., Late quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia), Paleogeography, Paleoclimatology, Paleoecology 193(1), 2003, 159-179.
 
[38]  Nesbitt, H.W. and Young, G.M., Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Cosmochimica Acta 48, 1984, 1523-1534.
 
[39]  Dondi, M., Fabbri, B. and Guarini, G., Grain-size distribution of Italian raw materials for building clay products: a reappraisal of the Winkler diagram. Clay Minerals 33, 1998, 435-442.
 
[40]  Abdelmalek, B., Bouazi, R., Bouftouha, Y., Bouabsa, L., Fagel, N., Mineralogical caracterization of neogene clay areas from the Jijel basin for ceramic purposes (NE Algeria-Africa). Applied Clay Science, 136, 2017, 176-183.
 
[41]  Richer de Forges, A., Feller, C., Jamagne, M., Arrouays, D., Perdus dans le triangle des textures. Étude et Gestion des Sols 15(2), 2008, 97-111.
 
[42]  Winkler, H.G.F., Bedeutung der korngrössenverteilung und des mineralbestandes von tonen für die herstellung grobkeramischer erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 1954, 337-343.
 
[43]  Diko, M.L. and Ekosse, G.E., Soil ingestion and associated health implications: A physicochemical and mineralogical appraisal of geophagic soils from Moko, Cameroon. Studies on Etno-Medicine 8(1), 2014, 83-88.
 
[44]  Ngole-Jeme, V.M. and Ekosse, G.I.E., A comparative Analyses of particle size distribution, Mineral composition and Major and trace element concentrations in soils commonly Ingested by humans. International Journal of Environmental Resources and Public Heath (12), 2015, 8933-8955.
 
[45]  Diko, M.L. and Siewe Diko, C.N., Physico-chemical of geophagic soils ingested to relief nausea and vomiting during pregnancy. African journal of traditional, complementary and alternative Medecines 11(3), 2014, 21-24.
 
[46]  Brouillard, M.Y. and Rateau, J.G., Pouvoir d’adsorption de deux argiles, la smectite et le kaolin sur des entérotoxines bacteriennes. Gastroentorologie Clinique et Biologique 13, 1989, 18-24.
 
[47]  Dominy, N.J., Davoust, E. and Minekus, M., Adaptive function of soil consumption: an in-vitro study modeling the human stomach and small intestine. Journal of Experimental Biology 207, 2004, 319-324.
 
[48]  Semiz, B., Caracteristics of clay-rich raw materials for ceramic applications in Denizli region (Western anatolia). Applied Clay Science 137, 2017, 83-93.
 
[49]  Abajo Manual sobre Fabrication des Baldosas MF., Manual sobre Fabrication des Baldosas, 2000, Tejas y Ladriolos. In: Beralmar, S.A. (Ed.). Barcelona.
 
[50]  Elimbi, A., Tchakoute, H.K. and Njopwouo, D., Effects of Calcination Temperature of Kaolinite Clays on the Properties of Geopolymer Cements. Construction and Building Materials, 25, 2011, 2805-2812.
 
[51]  McNally, G.H., Soil and Rock Construction Materials, 1998, 291-310. London: CRC Press.
 
[52]  Abdullahi, Y., Ali, E.A. and Oyeyemi, S., A Study of the Physico-Chemistry and Mineralogy of Agbaja Clay for Its Industrial Application. Chemical Journal 3, 2012, 53-60.
 
[53]  Casagrande, A., Plascticity chart for the classification of cohesivesoils. Transactions, American Society of Civil Engineers, 1948, 113, 901.
 
[54]  Holtz, R.D. and Kovacs, W.D., An introduction to geotechnical engineering. Englewood Cliffs, New Jersey, Prentice Hall, 1981, 733p.
 
[55]  Hajjaji, M., Kacim, S., Alami, A., El Bouadili, A., El Mountassir, M., Chemical and mineralogical characterization of a clay taken from the Moroccan Meseta and a study of the interaction between its fine fraction and methylene blue. Applied Clay Science, 20, 2001, 1-12.
 
[56]  Elimbi, A., Founyapte, S. and Njopwouo, D., Effets de la température de cuisson sur la composition minéralogique et les propriétés physiques et mécaniques de deux matériaux du gisement argileux de Bakong (Cameroun). In : Annales de chimie, 29, 2004, Lavoisier, Paris, 67-77.
 
[57]  Bergaya, F., Theng, B.K.G. and Lagaly, G., Developments in Clay Science 1. Handbook of Clay Science, Developments in Clay Science Series, Volume 1, 2006, xxi + 1224 pp. Amsterdam: Elsevier, New York.
 
[58]  Bain, A.J., Composition and properties of clays used in various fields of ceramics: Part I. Ceramic Forum International 62, 1986, 536-538.
 
[59]  Wilding, L.P., Advancement in the knowledge base of vertisols genesis, classification, distribution and management, Revista Científica Agropecuaria 8(1), 2004, 45-54.
 
[60]  Tsozué, D., Nzeukou, N.A., Maché, J.R., Loweh, S., Fagel, N., Mineralogical, Physico-Chemical and Technological Characterization of Clays from Maroua (Far-North, Cameroon) for Use in Ceramic Bricks Production. Journal of Building Engineering 11, 2017, 17-24.
 
[61]  Nzeukou Nzeugang, A., Medjo Eko, R., Fagel, N., Kamgang Kabeyene, V., Njoya, A., Balo Madi, A., Mache, J.R., Melo Chinje, U., Characterization of clay deposits of Nanga Eboko (Central Cameroon): Suitability in the production of building materials. Clay Minerals 48, 2013, 655-662.
 
[62]  Anger, R., Fontaine, L., Houben, H., Doat, P., Van Damme, H., Olagnon, C., Jorand, Y., La terre, un béton comme les autres ? Quelques mécanismes de stabilisation du matériau terre. In: Rainer, L., et al., Eds., Terra 2008: The 10th International Conference on the Study and Conservation of Earthen Architectural Heritage, Getty Publications, Bamako, 2011, 222.
 
[63]  Pédro, G., Essai sur la caractérisation géochimique des différents processus zonaux résultant de l’altération des roches superficielles (cycle alumino-silicique). Comptes Rendus de l’Académie des Sciences, Série D 262, 1966, 1828-1831.
 
[64]  Kornmann, M., Ingénieurs du Centre Technique des Tuiles et Briques., Matériaux de construction en terre cuite, fabrication et propriétés, 2005, 33-34. Editions Septima.
 
[65]  Mathieu, C. and Lozet, J., Dictionnaire encyclopédique de science du sol: Avec index anglais-français, 2011, Lavoisier, Paris.
 
[66]  Rickard, D. and Luther, G.W., “Chemistry of Iron Sulfides,” Chemical Reviews 107, 2007, 514-562.
 
[67]  Temga, J.P., Maché, J.R., Balo, M.A., Nguetnkam, J.P., Bitom, D.L., Ceramic applications of clay in lake tchad Basin, Central Africa. Applied Clay Science 171, 2019, 118-132.
 
[68]  Marc, P. and Jacques, G., Analyse du sol minéralogique, organique et minérale, 2003, Springer-verlag. France, 243.
 
[69]  Nzeukou Nzeugang, A., Tsozué, D., Kagonbé, P.B., Balo Madi, A., Fankam, D., Ngos III, S., Nkoumbou, C., Fagel, N., Clayey soils from Boulgou (North Cameroon): geotechnical, mineralogical, chemical characteristics and properties of their fred products, SN Applied Sciences 3, Article No. 551, 2021.
 
[70]  Fiori, C., Fabbri, B., Donati, G. and Venturi, I., Mineralogical composition of the clay bodies used in the Italian Tile Industry. Applied Clay Science 4, 1989, 461-473.