Journal of Geosciences and Geomatics. 2022, 10(3), 112-125
DOI: 10.12691/JGG-10-3-1
Original Research

Contribution to the Petrogenesis of Pan-Africain Granitoids from East Pitoa in the Northern Cameroon Domain of the Central Africain Fold Belt: Implications for Their Sources and Geological Setting

Cedric Roth Happi Djofna1, , Merlain Houketchang Bouyo2, Daouda Dawai3, Rigobert Tchameni1, Landry Kouedjou4, Martial Periclex Tchunte Fosso1 and Hervé Brice Fotso Kengne1

1Department of Earth Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon

2Centre for Geological and Mining Research, PO Box 333, Garoua, Cameroon

3Department of Earth Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon

4Department of Geography, Faculty Of Arts, Letters And Social Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon

Pub. Date: June 26, 2022

Cite this paper

Cedric Roth Happi Djofna, Merlain Houketchang Bouyo, Daouda Dawai, Rigobert Tchameni, Landry Kouedjou, Martial Periclex Tchunte Fosso and Hervé Brice Fotso Kengne. Contribution to the Petrogenesis of Pan-Africain Granitoids from East Pitoa in the Northern Cameroon Domain of the Central Africain Fold Belt: Implications for Their Sources and Geological Setting. Journal of Geosciences and Geomatics. 2022; 10(3):112-125. doi: 10.12691/JGG-10-3-1

Abstract

This article presents original geological and geochemical data on more or less deformed granitoids rocks of the Pitoa region in Domain North Cameroon. The Pitoa granitoids consist of leucocratic, gray and pink colored, fine to medium grained granites as well as quartz monzonite, containing numerous enclaves of mafic rocks, intruded in gneiss and amphibolite and cut by dykes of pegmatite, aplite and dolerite. They present porphyritic, inequigranular, granophyric and microgranophyric textures consisting essentially of quartz, K-feldspar, plagioclase, biotite and the accessory minerals are zircon, apatite, titanite and opaque minerals. The Plutonic rocks of Pitoa show the characteristics of the shoshonitic and calc-alkaline series with high-K content. They are magnesian to ferrous, luminous to slightly hyper-luminous metallic and exhibit the characteristics of type 1 granitoids. REE data and normalized chondritic plots show variable enrichment of all rocks in LREE compared to HREE with a negative europium anomaly (Eu/Eu*= 0.19 – 0.8), except for the pink granite sample DS15 which shows a positive Eu anomaly (14.6). They are distinctively depleted in Th, Nb, Ba, Sr, Ti and Ta. The data indicate that this assemblage of granitic rock did not result from the simple differentiation of a common parental magma, but show that the plutonic rocks of Pitoa arose from different crustal protoliths. Trace element and major composition are consistent with the magmatism which may have involved reworking of a composite protolith of metagrey-wackes in the upper crust and amphibolitised high -K calc-alkaline basaltic andesites in the northern domain of the Orogenic belt from Central Africa. These granitoids were set up in a tectonic context of continental subduction collision. They are emplaced in the active continental margin and fractional crystallization (FC) is a major process that controls magmatic differentiation.

Keywords

petrography, geochemistry, north cameroon domain, pan-african granitoids, geodynamics

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Pin, C., Binon, M., Belin, J.M., Barbarin, B. & Clemens, J.D. 1990: Origin of microgranular enclaves in granitoids: Equivocal Sr-Nd evidence from Hercynian rocks in the Massif Central (France). J. Geoph. Res. 95, 17, 821-17, 828.
 
[2]  Donaire, T., Pascual, E., Pin, C. & Duthou, J-L. 1999: Tow-stage granitoid-forming event from an isotopically homogeneous crustal source: The Los Pedroches batholith, Iberian Massif, Spain. GSA Bull. V. 111, 12, 1897-1906.
 
[3]  Depaolo, D.J. 1981: Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Plant. Sci. Lett. 53, 189-202.
 
[4]  Barbarin 1989: Importance des différents processus d’hybridation dans les plutons granitiques du batholite de la Sierra Nevada, Californie. Schweiz.Mineral. Petrogr. Mitt. 69, 303-315.
 
[5]  Roberts, M.P., Pin, C., Clemens, J. D. & Paquette, J.L. 2000: Petrogenesis of Mafic to Felsic Plutonic Rock Association: the Calc-alkaline Quérigut complex, Franch Pyrenees. J. Petrol. 41, 809-844.
 
[6]  Huppert, H.E. & Sparks, R.S.J. 1988: The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol. 29, 599-624.
 
[7]  Johannes, W. & Holtz, F. 1991: Formation and ascent of granitic magmas. Geol. Rdsch. 80, 225-231.
 
[8]  schwoerer, P., 1965. Notice explicative sur la feuille de Garoua Est avec une carte géologique de reconnaissance au 1/500000. Direction des mines et géologie, Yaoundé, 49p. Imprimerie Nationale Yaoundé.
 
[9]  Toteu, S.F., Yongue Fouateu, R., Penaye, J., Tchakounté, J., Seme Mouangue, A.C., Van Schmus, W.R., Deloule, E., Stendal, H., 2006a. U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. J. Afr. Earth Sci. 44, 479-493.
 
[10]  Toteu S.F., Van Schmus W.R., Penaye J., Michard A., 2001. New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on pre-Pan-African history of central Africa. Precambrian Res. 108, 45-73.
 
[11]  Penaye, J., Kröner, A., Toteu, S.F., Van Schmus, W.R., Doumnang, J.C., 2006. Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (ca. 740 Ma) Pan-African magmatic arc in south western Chad. J. Afr. Earth Sci. 44, 530-542.
 
[12]  Toteu, S.F., Penaye, J., Poudjom Djomani, Y., 2004. Geodynamic evolution of the Pan-African belt in Central Africa with special reference to Cameroon. Canadian Journal Earth Sciences 41, 73-85.
 
[13]  Van Schmus W. R., Oliveira E. P., da Silva Filho. A. F., Toteu S. F., Penaye J., Guimarães I. P., 2008. Proterozoïc links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society, London, special Publications; v. 294, pp 69-99.
 
[14]  Bouyo Houketchang, M., Toteu, S.F., Deloule, E., Penaye, J., Van Schmus, W.R., 2009. U–Pb and Sm–Nd dating of high-pressure granulites from Tcholliré and Banyo regions: evidence for a Pan-African granulite facies metamorphism in northcentral Cameroon. Journal of African Earth Sciences 54, 144-154.
 
[15]  Nzenti, J.P., Ngako, V., Kambou, R., Penaye, J., Bassahak, J., Njell, O.U., 1992. Structures régionales de la chaîne panafricaine du Nord Cameroun: Comptes Rendus Académie des Sciences Paris, série II 315, 209-215.
 
[16]  Ngako V., Affaton P., Njonfang E., 2008. Pan-African tectonics in northwestern Cameroon: implications for the history of western Gondwana. International Association for Gondwana Research 14: 509-522.
 
[17]  Ngako, V. and Njonfang, E., 2011. Plates amalgamation and plate destruction, the Western Gondwana history. In: D. Closson (Ed.), Tectonics. INTECH, UK, p. 3-34.
 
[18]  Njanko, T., Nédélec, A., Kwékam, M., Siqueira, R., Estéban, L., 2010. Emplacement and deformation of the Fomopéa pluton: implication for the Pan-African history of Western Cameroon. Journal of Structural Geology 32, 306-320.
 
[19]  Castaing, C., Feybesse, J.-L., Thiéblemont, D., Triboulet, C., Chèvremont, P., 1994. Paleogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks. Precambrian Research 69, 327-344.
 
[20]  Lebas, M.J., Le Maitre, R.W., Strecksein, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali- silica diagram. Journal of petrology 27, 745-750.
 
[21]  Shand, S.J., 1943. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relations to Ore-deposits. Wiley, New York 444 pp.
 
[22]  Peccerillo A., Taylor S. R., 1976. Geochemistry of Eocene cal-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58: 63-81.
 
[23]  Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A geochemical classification for granitic rocks. J. Petrol. 42 (11), 2033-2048.
 
[24]  Pouclet, A., Vidal, M., Doumnang, J.C., Vicat, J.-P., Tchameni, R., 2006. Neoproterozoic evolution in the Southern Chad: Pan-African Ocean basin closing, arc accretion and late- to post-orogenic granitic intrusion. J. Afr. Earth Sci. 44, 543-560.
 
[25]  Tchameni R., Pouclet A., Penaye J., Ganwa A. A., Toteu S. F., 2006. Petrography and geochemistry of the Ngaoundéré Pan-African granitoïds in central North Cameroon: implications for their sources and geological setting, J. African Earth Sci., 44: 511-529.
 
[26]  Ganwa A.A., Siebel W., Frisch W., Shang C.K., 2011. Geochemistry of magmatic rocks and time constraints on deformational phases and shear zone slip in the Meiganga area, central Cameroon. Int. Geol. Rev. 53, 759-784.
 
[27]  Kwekam M., Liegeois J.P., Njonfang E., Affaton P., Hartmann G., Tchoua F., 2010. Nature, origin and significance of the Pan-African high-K calc-alkaline Fomopea plutonic complex in the Central African fold belt (Cameroon). J. Afr. Earth Sci. 57, 79-95.
 
[28]  Saha-Fouotsa Alliance Nicaise, Olivier Vanderhaeghe, Pierre Barbey, Aurélien Eglinger, Rigobert Tchameni, Armin Zeh, Periclex Fosso Tchunte, Emmanuel Negue Nomo., 2019. The geologic record of the exhumed root of the Central African Orogenic Belt in the central Cameroon domain (Mbé–Sassa-Mbersi region). Journal of Earth Science.
 
[29]  Irvine, T. N. & W. R. A. Baragar 1971. A guide to the chemical classification of the common rocks. Can. J. Earth Sci. 8, 523-48.
 
[30]  Harker, A. 1909. The natural history of igneous rocks. New York: Macmillan.
 
[31]  Mc Donough WF, Sun SS. 1995. The composition of the Earth. Chemical Geology, 120: 223-253.
 
[32]  Sun, S.-S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins, vol 42. Geol. Soc. London Spec. Publ., pp. 313-345.
 
[33]  DePaolo, D.J., 1981. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, california. Journal of geophysic Research 86, 10470-10488.
 
[34]  Liégeois et al., 1994 J.P. Liégeois, R. Black, J. Navez and L. Latouche, Early and late PanAfrican orogenies in the Aïr assembly of terrane (Tuareg shield, Niger), Precambrian Research 67 (1994), pp. 59-88.
 
[35]  Altheer R., Holl A., Hegner E., Langer C., Kreuzer H., 2000. High potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50: 51-73.
 
[36]  Roberts, M.P. and Clemens, J.D. (1993) Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21, 825-828.
 
[37]  Chappell, B.W., White, A.J.R. 1974. Two contrasting granite types. Pacific Geology 8, 173-174.
 
[38]  Partino D. A. E., Beard J. S., 1996. Effects of P, f (O2) and Mg/Fe ratio on deshydratation melting of model metagrauwackes. Journal of Petrology 37: 999-1024.
 
[39]  Blevin, P. L. (2004). Redox and composional parameters for interpretating the granitoid metallogeny of Eastern Austria: implications for gold-rich ore system. Resour. Geol. 54, 241-252.
 
[40]  Bonin, B., Moyen, J.F., Magmatisme et roches magmatiques, 3e édition, Dunod, Paris, 2011.
 
[41]  Aydoğan, M.S., Coban, H., Bozcu, M., Akinci, Ö., “Geochemical and mantle-like isotopic (Nd, Sr) composition of the Baklan Granite from the Muratdağı Region (Banaz, Uşak), western Turkey: Implications for input of juvenile magmas in the source domains of western Anatolia Eocene-Miocene granites”, J Asian Earth Sci, 33, 155-176, 2008.
 
[42]  Nedelec A., Bouchez J.-L., 2015. Granites: Petrology, Structure, Geological Setting and Metallogeny. Oxford University Press, p. 335.
 
[43]  Benoît Joseph Mbassa, Emmanuel Njonfang, Caroline Neh Ngwa, Michel Grégoire, Zénon Itiga, Pierre Kamgang, Mfomou Ntepe, Jesús Solé Viñas, Mathieu Benoit, Jacques Dili-Rake, and Ferdinand Mbossi Eddy, “Mineral Chemistry and Descriptive Petrology of the Pan-African High-K Granitoids and Associated Mafic Rocks from Mbengwi, NW Cameroon: Petrogenetic Constraints and Geodynamic Setting.” Journal of Geosciences and Geomatics, vol. 8, no. 2 (2020): 58-75.
 
[44]  Pearce J. A., Harris N. W., Tindle A. G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25: 956-983.
 
[45]  Thirlwall M. F., Smith T. E., Graham A. M., Theodorou N., Hollings P., Davidson J.P., Arculus R .J., 1994. High field strength element anomalies in arc lavas: Source or process? Journal of Petrology, v. 35, p. 819-838.
 
[46]  Ishihara S., 1977. The magnetite-series and ilmenite-series granitic rocks: Mining Geology, v. 27, p. 293-305.
 
[47]  Guy Scherrer., 2003. Géochimie et pétrogenèse des roches métagabbroiques du domaine du Natashquan secteur oriental de la province de Grenville, Québec. Mémoire pour obtention du grade de maître des sciences en science de la terre. Université de québec.121p+Annexes.
 
[48]  Rollinson H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical co published in the United States with John Wiley & Sons, New York. 351 pages.
 
[49]  Thiéblemont D., Tegyey M., 1994. Une discrimination géochimique des roches différenciées témoin de la diversité d’origine et de situation tectonique des magmas calco-alcalins. Comptes Rendus de l’Académie des Sciences Paris 319: 87-94.
 
[50]  Liégeois, J.-P., Navez, J., Hertogen, J., and Black, R. (1998). Contrasting origin of post-collisional high-K calc-alkaline and shoshonotic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 45, 1-28.
 
[51]  Bouyo, M.H., Penaye, J., Njel, U.O., Moussango, A.P.I., Sep, J.P.N., Nyama, B.A., Wassouo, W.J., Abate, J.M.E., Yaya, F., Mahamat, A., Ye, H., Wu, F., 2016. Geochronological, geochemical and mineralogical constraints of emplacement depth of TTG suite from the Sinassi Batholith in the Central African Fold Belt (CAFB) of northern Cameroon: implications for tectonomagmatic evolution. J. Afr. Earth Sci.116, 9-41.
 
[52]  Emmanuel Negue Nomo., Rigobert Tchameni., Olivier Vanderhaeghe., Fenguye Sun c., Pierre Barbey., Leontine Tekoum., Periclex Martial Fosso Tchunte., Aurelien Eglinger., Nicaise Alliance Saha Fouotsa., 2017. Structure and LA-ICP-MS zircon U-Pb dating of syntectonic plutons emplaced in the Pan-African Banyo-Tchollire shear zone (central north Cameroon). Journal of African Earth Sciences 131 (2017) 251-271.
 
[53]  Dawaï, D., Bouchez, J.L., Paquette, J.L., Tchameni, R., 2013. The Pan-African quartzsyenite of Guider (North-Cameroon): magnetic fabric and U-Pb dating of the late-orogenic emplacement. Precambr. Res. 236, 132-144.
 
[54]  Nascimento M.A.L., Antunes A.F., Galindo A.C., Jardim de Sa E.F., Souza Z.S., 2000. Geochemical signature of the brasiliano-age plutonism in the serido belt, northeastern Borborema Province (NE Brazil). Rev. Bras. Geociências 30, 161-164.
 
[55]  Guimaraes I.P., Da Silva Filho A.F., Araújo D.B., Almeida C.N., Dantas E.L., 2009. Trans-alkaline magmatism in the serrinhaepedro velho complex, Borborema Province, NE Brazil and its correlations with the magmatism in eastern Nigeria. Gondwana Res. 15, 98-110.
 
[56]  Kwékam, M., Genèse et évolution des granitoïdes calco-alcalins au cours de la tectonique panafricaine: le cas des massifs syn à tardi-tectoniques de l’Ouest-Cameroun (Régions de Dschang et de Kekem), Thèse Doct d’État, Univ Yaoundé I, 2005.
 
[57]  Orsini J.B., Cocirta C. & Zorpi M.J. 1991. Genesis of mafic microgranular enclaves trough differenciation of basic magmas, mingling and chemical exchanges with their host granitoid magmas. In: Didier J. & Barbarin B. (eds) Enclaves and granite petrology, Develop. Petrol. 13, Elsevier, 445-463.
 
[58]  Boukaoud E. H., 2007. Étude pétrographique et géochimique des pegmatites de Sidi Mezghiche (Wilaya de Skikda, nord-est algérien). Mémoire de magistère, université Mentouri Constantine, Algérie, 134p.