Journal of Geosciences and Geomatics. 2022, 10(2), 99-111
DOI: 10.12691/JGG-10-2-4
Original Research

Migration and Retention of Uranium in the Weathering Blanket Developed on Uraniferous Syenite in Ngombas Southern Cameroon

Joel Simon Mbai1, , Akumbom Vishiti1, Bravo Martin Mbang Bonda1, Gilbert François NGON NGON2, Elie Constantin Bayiga2, Martine Gérard3 and Jacques Etamè1, 2

1The University Institute of Technology, University of Douala, P.O Box 8698, Douala, Cameroon

2University of Douala, Faculty of Sciences, P.O Box 24157, Douala, Cameroon

3Sorbonne Universités CNRS UMR 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), 4 Place Jussieu, Paris F-75005, France

Pub. Date: May 23, 2022

Cite this paper

Joel Simon Mbai, Akumbom Vishiti, Bravo Martin Mbang Bonda, Gilbert François NGON NGON, Elie Constantin Bayiga, Martine Gérard and Jacques Etamè. Migration and Retention of Uranium in the Weathering Blanket Developed on Uraniferous Syenite in Ngombas Southern Cameroon. Journal of Geosciences and Geomatics. 2022; 10(2):99-111. doi: 10.12691/JGG-10-2-4

Abstract

The lolodorf syenite axis is known for its radiometric indices. In the Ngombas area the migration and retention of uranium in the regolith developed on syenite is studied using a combination of mineralogy and geochemistry in a bid to understand the processes involved in the dissolution and redistribution of uranium in the secondary environment. A trench dug in the area shows three horizons from the bottom to the top. They include the saprolite, B and Ah horizons. Petrographic and XRD investigations of the syenites reveals minerals such as plagioclase, potassic feldspar, amphibole, pyroxene, biotite, quartz, hematite, zircon coupled with uraninite, U-monazite. The regolith developed on the syenite shows relics of plagioclase, amphibole, quartz, hematite, goethite, chlorite, vermiculite, kaolinite. This is associated with U-bearing minerals such as uranothorite, U-monazite, U-zircon, U-florencite and U-rhadophane. The chemical alteration index (CIA), and gain and loss diagrams indicate that the horizons are more weathered from the top to the bottom. The presence of uranium bearing phases such as uranothorite indicates that U-minerals were dissolved, migrated and sorbed on thorite. The occurrences of U-florencite and U-rhabdophane in the weathering blanket indicate that uranyl is stabilized by phosphate minerals. Under oxidizing conditions the stability of hexavalent uranium is favored by the presence of clay minerals and Fe/Mn-oxyhydroxides. Thus, the migration of uranium in Ngombas is sequestrated by clay blended on Fe-oxides through the process of sorption. The U-bearing phases in the regolith that survived weathering include monazite and zircon. The presence of accessories minerals (U-zircon, U-monazite), sorption of uranium by phosphates, by Fe/Mn-oxyhydroxides, and clays minerals play important roles to reduce the U migration in environmental impact of Ngombas region.

Keywords

uranium, migration, weathering, uraniferous syenite, tropics, Cameroon

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Nahon, D,. Evolution of iron crusts in tropical landscapes. In:Coleman, S.M., Dethier, D.P. (Eds.), Rates of chemical weathering of rocks and minerals. Academic Press, pp. 169-191. 1986.
 
[2]  Kamgang Beyala V., Ekodeck G. E., Altération et bilans géochimiques des biotites des gneiss de Nkolbisson (NW de Yaoundé, Cameroun). Géodynamique 6 (2), 191-199. 1991.
 
[3]  Tardy, Y. Petrology of laterites and tropical soils. A.A. Balkema, Rotterdam, The Netherlands, Brookfield, VT, USA. 1997.
 
[4]  Traoré D., Beauvais A., Augé T., Chabeaux F., Parisot J. C., Cathelineau M., Peiffort C., Colin F. Platinum and palladium mobility in supergene environment: the residual origin of the pirogues river mineralization. New Caledonia Journal Geochemical Exploration 88, 350-354. 2006.
 
[5]  Etame, J., Suh, C.E., Gerard, M., Bilong, P., Phillipsite formation in nephelinitic rocks in response to hydrothermal alteration at Mount Etinde, Cameroon. Chemie der Erde-Geochemistry 72, 31-37. 2012.
 
[6]  Leprun J. C. Ferugineous cuirasses of crystalline countries of dry western Africa. Genesis-Transformation-Degradation. Doctorate thesis ès Sciences Géologie. P. 224. 1979.
 
[7]  Bocquier G., Muller J. P., Boulangé B. Laterites: current knowledge and perspectives on their differentiation mechanisms. Sci. Soil, fiftieth jubilee book of IAFES, pp. 123-138. 1984.
 
[8]  Bilong p., Eno Belinga S. M., volkoff B. Séquence d’évolution des paysages cuirassés et des sols ferrallitiques en zones forestières tropicales d’Afrique centrale. Place des sols à horizon d’argile tachetée. Comptes rendus académies sciences. Paris, série. 11. 1992.
 
[9]  Oliveira T. S., Fontes M. P. F., Da Costa L. M., Horn A. H. Relationship between magnetization and trace element content of Brazilian soils from different parent materials. Soils Sciences. 165 (10): 825-834. 2000.
 
[10]  Temgoua E., Hans-Rudolf P., Bitom D. Trace element differentiation in ferruginous accumulation soil patterns under tropical rainforest of southern Cameroon, the role of climatic change. The Science of the Total Environment. 303. 203-214. 2003.
 
[11]  Braun, J.-J., Ndam Ngoupayou, J.R., Viers, J., Dupre, B., Bedimo Bedimo, J.-P., Boeglin, J.-L., Robain, H., Nyeck, B., Freydier, R., Sigha Nkamdjou, L., Rouiller, J., Muller, J.-P., Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon. Geochimica et Cosmochimica Acta 69, 357-387. 2005.
 
[12]  Ebah A. S., Ndigui P. D., Beyanu A. A., Teutsong T., Bilong P. Geochemistry of pyroxenites, amphibolites and their weathered products in the Nyong unit, SW Cameroon (NW border of Congo craton): Implication for Au-PGE exploration. Journal of Geochemical Exploration. 114: 1-19.
 
[13]  Ndjigui, P.-D., Bilong, P., Bitom, D., Dia, A., Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinite in the Lomié ultramafic complex, South-East Cameroon. Journal of African Earth Sciences 50, 305-328. 2008.
 
[14]  Ndjigui P. D., Badinane M. F. B., Nyeck B., Nandjip H. P. K., Bilong P. Mineralogy and geochemical features of the coarse saprolite developed in the SW of Yaoundé, South Cameroon. Journal of African Earth Sciences. 79, 125-142. 2013.
 
[15]  Leybourne, M.I., Goodfellow, W.D., Bowle, D.R., Hall, G.M., Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in ground waters associated with Zn-Pb massive sulphide deposits. Applied Geochemistry 15, 695-793. 2000.
 
[16]  Borovec, Z. The adsorption of uranyl species by fine clay. Chemical Geology, 32 45-58. 1981.
 
[17]  Sylwester E.R., Hudson, E.A., Allen, P.G. The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim. Cosmochim. Acta 64, 2431-2438. 2000a.
 
[18]  Catalano, J.G., Brown Jr., G.E. Uranyl adsorption onto montmorillonite: evolution of binding sites and carbonate complexation. Geochemical Cosmochimical. Acta 69, 2995-3005. 2005.
 
[19]  Campos, B., Aguilar-Carrillo, J., Algarra, M., Gonçalves, M. A., Rodríguez-Castellón, E., Joaquim, C.G. Esteves da Silva, Bobos, I. Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Applied Clay Science 85. 53-63 Elsevier. 2013.
 
[20]  Kanzari, A., Gérard, M., Boekhout, F., Galoisy, L., Calas, G., Descostes, M. Impact of incipient weathering on uranium migration in granitic waste rock piles from former U mines (Limousin, France). Journal of Geochemical Exploration. 183, 114-126. 2017.
 
[21]  Jerden, Jr J.L., Sinha, A. K, Zelazny, L.. Natural immobilization of uranium by phosphate mineralization in an oxidizing saprolitesoil profile: chemical weathering of the Colles Hill uranium deposit, Virginia. Chemical Geology, 199: 129-57. 2003.
 
[22]  Jerden, Jr., Sinh, A. K. Geochemical coupling of uranium and phosphorous in soils overlying an unmined uranium deposit: Coles Hill, Virginia. Journal of Geochemical Exploration 91, 56-70. 2006.
 
[23]  Langmuir, D., Herman, J. S. The mobility of thorium in natural waters at low temperatures. Geochemical of Cosmochimical. Acta 44, 1753-1766. 1980.
 
[24]  Regenspurg, S., Margot-Roquier, C., Harfouche, M., Froidevaux, P., Steinmann, P., Junier, P., Bernier-Latmani, R.,. Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). Geochimical Cosmochimical Acta 74, 2082-2098. 2010.
 
[25]  Cabral Pinto, M.M.S., Silva, M.M.V.G., Ferreira da Silva, E, Miranda, P., Marques, R., Prudêncio, I., Rocha, F. Uranium Contents in the Lithological Formations of Santiago Island, Cape Verde. Earth and Planet. Sciences 8, 18-22. 2014.
 
[26]  Boekhout, F., Gérard, M., Kanzari, A., Michel, A., Déjeant, A., Galoisy, L., Cala, G. Uranium migration and retention during weathering of a granitic waste rock pile. Applied Geochemistry 58, 123-135. 2015.
 
[27]  Tsozué D., Ndjigui P. D. Geochemical Features of the Weathered Materials Developed on Gabbro in a Semi-Arid Zone, Northern Cameroon. Geosciences, 7, 16; 2017.
 
[28]  Briqueu, L., Lancelot, J.R., Valois, J. P., Walgenwitz, F. Geochronologie U-Pb et génèse d’un type de minéralisation uranifère: les alaskites de Goanikontes (Namibia) et leur encaissant. Bulletin Centrale De Recherche Exploration-Production, Elf Aquitaine 4, 759-811. 1980.
 
[29]  Bowden, P., Herd, D., Kinnaird, J.A. The significance of Uranium and Thorium concentrations in pegmatitic leucogranites (alaskites), Rossing Mine, Swakopmund, Namibia. Communications of the Geological Survey of Namibia 10, 43-49. 1995.
 
[30]  Parnell J. Petrographic relationships between mineral phases and bitumen in the Oklo Proterozoic natural fission reactors, Gabon. Mineralogical Magazine, 60, 581-593. 1996.
 
[31]  Herd, D.A., Geochemistry and mineralization of alaskite in selected areas of the Reossing Uranium Mine, Namibia. M.Sc. Thesis (Unpubl.), University of St. Andrews, Scotland. P. 205. 1997.
 
[32]  Basson, I.J. Fault modeling in the Rossing Uranium Mine, Namibia. Report for Moore, Spence and Jones and Rio Tinto, 44 pp. 2001a.
 
[33]  Nex, P.A.M., Kinnaird, J.A., Oliver, G. J. H. Petrology, geochemistry and mineralization of post-collisional magmatism in the southern Central Zone, Damaran Orogen, Namibia. Journal of African Earth Sciences 33, 481-502. 2001a.
 
[34]  Basson, I.J., Greenway, G. The Rossing Uranium Deposit: a product of late-kinematic localization of uraniferous granites in the Central Zone of the Damara Orogen, Namibia. Journal of African Earth Sciences 38. 413-435. 2004.
 
[35]  Kouske, A. P., Suh, C.E., Ghogomu, R. T., Ngako, V. Na-Metasomatism and Uranium Mineralization during a Two-Stage Albitizationat Kitongo, Northern Cameroon: Structural and Geochemical Evidence. International Journal of Geosciences 3, 258-279. 2012.
 
[36]  Mosoh Bambi, C.K, Suh, C.E., Nzenti, J.P., Frimmel, H.E. U-Mo mineralization potential in Pan-African granites, southwestern Cameroon: Economic geology of the Ekomédion prospect. Journal of African Earth Sciences 65, 25-45. 2012.
 
[37]  Embui V. F., Suh C. E., Cottle J. M., Etame J., Mendes J., Agyingi C. M., Vishiti A., Shemang E. M., Lehmann B. Zircon chemistry and new laser ablation U-Pb ages for uraniferous granitoids in SW Cameroon. Acta Geochimical. 2019.
 
[38]  Bute, S. I., Yang, X., Suh, C. E., Girei, M. B., Usman, M. B. Mineralogy, geochemistry and ore genesis of Kanawa uranium mineralization, Hawal Massif, eastern Nigeria terrane: Implications for uranium prospecting in Nigeria and Cameroon. Ore Geology Reviews (2020).
 
[39]  Kouske, A. P. Uranium occurrences associated with sodium metasomatism within the Pan-African mobile zone- the Kitongo, Salaki and Mayo Nielse uranium mineralizations in the Poli region, northern Cameroon: petrographic, geochemical and structural investigations. University of Yaounde I. PhD thesis. PP 264. 2013.
 
[40]  Maurizot, P. Abessolo, A. Feybesse, J.L., Johan Lecomte P. Etude de prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985. Rapport de BRGM 85: 274p. 1986.
 
[41]  Ele, A.P., Owono, A.P., Ekobena, F.H., Ben-Bolie, G.H., El Khoukhi, T. High background radiation investigated by gamma spectrometry of the soil in the southwestern region of Cameroon. J. Environ. Radioact. 101, 739-743. 2010.
 
[42]  Mvondo S., Ben-Bolie G.H., Ema'a Ema'a J.M., Owono Ateba P., Ele abiama P., Beyala Ateba J.F. Study of soil-fern transfer of naturally occurring alpha emitting radionuclides in the Southern Region of Cameroon. Journal of Environmental Radioactivity 180. 114-119. 2017.
 
[43]  Braun J. J., Pagel M., Muller J. P., Bilong P., Mkhard A., Guillet B. Cerium anomalies in lateritic profiles. Geochimica. Cosmochimica. Acta 54, 781-795. 1990.
 
[44]  Braun, J.-J., Pagel, M., Herbillon, A., Rosin, C. Mobilization and redistribution of REEs and Th in syenitic lateritic profile: a mass-balance study. Geochimica et Cosmochimica Acta 57, 4419-4434. 1993.
 
[45]  Prian, J.P., Coste, B., Eko N’dong, J., Johan, V., Ledru, P. Synthèse géologique et géochimique, potentialités minières du degre´carre´Boue´(Gabon central) avec carte géologique au 1/200,000. République gabonaise. Ministère des Mines et des Hydrocarbures, Libreville, BRGM, Orléans, 103 p. 1990.
 
[46]  Toteu, S.F., Van Schmus, W.R., Penaye, J., Nyobe, J.B. U-Pb and Sm-Nd evidence for eburnian and panafrican high grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Research, 67, 321-347. 1994.
 
[47]  Feybesse, J.L., Johan, V., Triboulet, C., Guerrot, C., Mayaga-Minkolo, F., Boucho, V., Eko N‘dong, J. The West Central African belt: a model of 2.5-2.0 Ma accretion and two-phase orogenic evolution. Precambrian Research 87, 161-216. 1998.
 
[48]  Penaye, J. Toteu, S.F. Tchameni, R. Van Schmus, W.R. Tchakounté, J. Ganwa, A.A. Minyem, D. Nsifa, E.N. The 2.1 Ma West Central African Belt in Cameroon: extension and evolution. Journal of African Earth Sciences 39: 159-164. 2004.
 
[49]  Lerouge, C. Coherie A. Toteu S.F. Pénaye, J. Milesi, J.P. Tchameni, R. Nsifa, N.E. Fanny, M.C., Deloule, E. Shrimp U-Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, south-western Cameroon: conse-quences for the Eburnean-Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences 44 (4-5): 413-427. 2006.
 
[50]  Messi Ottou E. J., Owona S., Mvondo Owono F., Ntomba S. M., Akame J. M., Koum S., Mvondo Ondoa J. Analyse morphotectonique par couplage d’un modèle numérique de terrain (MNT) et des données de terrain d’une portion de zone mobile paléoprotérozoïque de la région de Lolodorf (Complexe du Nyong, SW Cameroun). Sciences, Technologies et Développement, 15, 24-39. 2013.
 
[51]  Nedelec A, Minyem D, Barbey P. High PHigh T anatexis of Archaean Tonalitic grey gneisses: the Esekamigmatites, Cameroon, Precamb Research, 62, 191-205. 1993.
 
[52]  Omoko M. Dynamique de l’eau dans un sol et étude comparée entre l’évaporation mesurée et calculée en climat équatorial. Thèse Doctorat Spéciale Université de Bordeaux. P. 59. 1984.
 
[53]  Letouzey, R. Notice explicative de la carte phytogéographique du Cameroun à l’échelle de 1/500000. Institut de la carte internationale de la végétation Toulouse. 240p. 1985.
 
[54]  Nesbitt, H.W., Young, G.M. Early proterozoic climates and plate motions in ferred from major element chemistry lutites, nature 299, 715-717. 1982.
 
[55]  Cuney M., Emetz A., Mercadier J., Mykchaylov V., Shunko V., YuslenkoA. Uranium deposits associated with Na-metasomatisme from central Ukraine: A review of some of the major deposits and genetic constraints. Elsevier Ore Geology Reviews 44, 82-106. 2012.
 
[56]  Forster, H.-J. Composition and origin of intermediate solid solutions in the system thorite xenotime-zircon-coffinite. Lithos 88 35-55. 2006.
 
[57]  Cabral Pinto M. M. S., Silva M. M. V. G., Neiva Fernanda Guimar A. M. R., Silva P. B.,. Release, Migration, Sorption, and (Re) Precipitation of U during Peraluminous Granite Alteration under Oxidizing Conditions in Central Portugal. Geosciences, 8, 95; 2018.
 
[58]  Grenthe, I., Drozdzynski, J., Fujino, T., Buck, E.C., Albrecht-Schmitt, T.E., Wolf, S.F., Uranium. In: Edelstein, N.M., Fuger, J., Morss, L.R. (Eds.), The Chemistry of the Actinide and Transactinide Elements, third ed., vol. 1. Springer, Dordrecht, pp. 253-698. Chap. 5. 2006.
 
[59]  Duff, M. C., Coughlin, J. U. Hunter D. B. Uranium co-precipitation with iron oxide minerals. Geochemical et Cosmochimical Acta, 66, (20), 3533-3547. 2002.
 
[60]  Wellman, D.W., Icenhower, J.P., Gamerdinger, A.P., Forrester, S.W. Effects of pH, temperature, and aqueous organic material on the dissolution kinetics of meta-autunite minerals, (Na, Ca)2-1[(UO2)(PO4)]23H2O. American Mineral. 91, 143-158. 2006.
 
[61]  Sreejesh, N., Karimzadeh, L., Merkel, J. B. Sorption of uranyl and arsenate on SiO2, Al2O3, TiO2 and FeOOH. Environment Earth Sciences 72: 3507-3512. 2014.
 
[62]  Scherrer, N.C., Engi, M., Gnos, E., Jakob, V., Lietchi, A. Monazite Analysis; From Sample Preparation to Microprobe Age Dating and REE Quantification. 80. 93-105. 2000.
 
[63]  Payne, Τ. E., Davis, J.A., Waite, T.D. Uranium adsorption on ferrihydrite - effects of phosphate and humic acid. Radiochimical Acta 74 (S1), 239-244. 1996.
 
[64]  Rowe, R. K., Quigley, R.M., Brachman, R.W.I., Booker, J.R., Brachman, R. Barrier Systems for Waste Disposal Facilities. CRC Press. ISBN 9780367863722. 2nd Edition. 2004.
 
[65]  Brown, G.E., Calas, G. Mineral-aqueous solution interfaces and their impact on the environment. Geochemical Prospect. 1, 483-484. 2012.
 
[66]  Cumberland, S.A., Douglas, G., Grice, K., Moreau, J.W. Uranium mobility in organic matter-rich sediments: a review of geology and geochemical processes. Earth Science Review. 159, 160-185. 2016.
 
[67]  Neiva, A.M.R., Carvalho, P.C.S., Antunes, I.M.H.R., Silva, M.M.V.G., Santos, A.C.T., Cabral Pinto, M.M.S., Cunha, P.P. Contaminated water, stream sediments and soils close to the abandoned Pinhal Do Souto uranium mine, Central Portugal. Journal Geochemical Exploration 136, 102-117. 2014.
 
[68]  Maher, K., Bargar, J.R., Brown Jr., G.E. Environmental speciation of actinides. Inorg. Chem. 52, 3510-3530. 2012.
 
[69]  Brugger, J., Burns, P.C., Meisser, N. Contribution to the mineralogy of acid drainage of uranium minerals: marecottite and the zippeite-group. American Mineral. 88 (4), 676-685. 2003.
 
[70]  Schlegel, M.L., Descostes, M. Uranium uptake by hectorite and montmorillonite: a solution chemistry and polarized EXAFS study. Environment Sciences Technology 43, 8593-8598. 2009.