Journal of Geosciences and Geomatics. 2022, 10(2), 89-98
DOI: 10.12691/JGG-10-2-3
Original Research

Clay Fraction in Mayo Kebbi (West-Chad): Physicochemical and Mineralogical Properties

Michèle Vanessa Bomolomo1, 2, , Ivan Emmanuel Fotsing Mouafo1, Christian Bouba Mana1, Boris Gouott Bekonga Secke1, 2, Prisca-Gaëlle Bien à Nwos1 and François Ndong Bidzang1

1Institute of Geological and Mining Research, Yaoundé, Cameroon

2University of Yaoundé 1, Yaoundé, Cameroon

Pub. Date: May 12, 2022

Cite this paper

Michèle Vanessa Bomolomo, Ivan Emmanuel Fotsing Mouafo, Christian Bouba Mana, Boris Gouott Bekonga Secke, Prisca-Gaëlle Bien à Nwos and François Ndong Bidzang. Clay Fraction in Mayo Kebbi (West-Chad): Physicochemical and Mineralogical Properties. Journal of Geosciences and Geomatics. 2022; 10(2):89-98. doi: 10.12691/JGG-10-2-3

Abstract

The samples used in this study were collected in the Mayo Kebbi region (western Chad). From a geological point of view, the Mayo Kebbi is a region with great potential. A lot of work has been done in this part of Chad. The aim of this study is to determine the proportions and types of minerals present in the <2µm fraction of the study area, their physico-chemio-mineralogical properties, their origin and the paleoenvironmental conditions that prevailed during their formation. Mineralogical analyses carried out on bulk rock and the positive hydrochloric acid test revealed that the fresh rocks of the two profiles studied are limestones. X-ray diffractometric analysis combined with ethylene glycol treatments and heating performed on the <2µm fraction of the collected materials, reveal the presence of smectitic type clay. The results obtained from these analyses reveal that smectite is the major mineral in these materials, with contents varying between 63 and 98%. It is associated with very low proportions of kaolinite (1 to 30%), illite (1 to 2%), and chlorite (1 to 5%). Quartz is the only non-clay accessory mineral identified. Geochemistry of these samples revealed that they consist primarily of SiO2 (1.3-78.67 wt. %), CaO (50.81-0.3 wt. %), Al2O3 (18.25-0.37 wt. %), and Fe2O3 (0.09-6.52 wt. %). The pH is slightly alkaline for these materials. The CEC (Cation Exchange Capacity) and exchangeable bases oscillate between 9.23-13.95 and 6.4-10.53 meq/100 respectively. The saturation indice is between 6 and 24 and the residual moisture values between 1.94 and 10.99%. These mineralogical and physico-chemical properties of these clay-rich Mayo Kebbi’s materials indicate that they can be used in many conventional clay applications. Furthermore, the findings of the geochemistry, the mineralogy of the bulk and <2µm fractions, added to the consideration of some geological parameters suggest that the smectites of the Mayo Kebbi's area, in Western Chad, have a dual origin. One part of these smectites is formed during partial hydrolysis and erosion of the formations located on the slopes near the mayo. The second part is formed in situ. Moreover, the results also suggested that the smectites in the study area were formed in an area with low topography and in which the dominant alteration is bisiallitization.

Keywords

smectite, mineralogy, physicochemical properties, sudano-sahelian area, Mayo Kebbi west, Chad

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Rontenberg, Thèse de doctorat de l’Université Pierre et Marie Curie, Paris 6, France, 2007.
 
[2]  Eslinger, E. and Peaver, D, Clay minerals for petroleum geologists and engineers, SEPM Short course 22. Soc. Economic, paleontologists and mineralogists, Tulsa, USA, 1988.
 
[3]  Guggenheim, S. and Martin, R.T, Definition of clay and clays minerals: joint report of the AIPEA and CMs nomenclature committees. Clays minerals, 30, 257-259, 1995.
 
[4]  Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galan, E., Kogure, T. and Stanjek, H, Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54(6), 761-772, (2006).
 
[5]  Njoya, A, Etude du gisement de kaolin de Mayouom (Ouest Cameroun): cartographie, minéralogie et géochimie. Thèse Doctorat/PhD, Université de Yaoundé I, Yaoundé Cameroun, 2007.
 
[6]  Pialy, P, Etude de quelques matériaux argileux du site de Lembo (Cameroun): minéralogie, comportement au frittage et analyse des propriétés d’élasticité. Thèse de Docteur de l'Université de Limoges, 2009.
 
[7]  Millot, G, Géologie des argiles: Altérations, Sédimentologie, Géochimie. Masson et Cie, Paris, 1964.
 
[8]  Caillère, S., Hénin, S. and Rautureau, M, Les argiles Ed. SEPTIMA, 1989.
 
[9]  Comment, G, Etude de la limite Crétacé- Tertiaire à Erto (province de Pordenone, Italie du nord). PhD. Thesis Suisse, Université de Neuchatel. 2006.
 
[10]  Velde, B, Introduction to clay minerals. London: Chapman and Hall, 1992.
 
[11]  Thorez, J., Argilloscopy of weathering and sedimentation. Bulletin Société Géologique de Belgique, 98, 245-267, 1989.
 
[12]  Fagel, N, Clay minerals, deep circulation, and climate. Development in Marine Geology, 1, 139-184. 2007.
 
[13]  Nibambin, S.S., Influence des ions fer sur les transformations thermiques de la kaolinite. Thèse de doctorat, France, Université de Limoges, 2003.
 
[14]  Adatte, T., Cours BENEFRI: clay-minerals sedimentology. Université de Neuchâtel, no published, 2005.
 
[15]  Murray, H.H, Applied clay mineralogy today and tomorrow. Clay Minerals, 34, 39, 1999.
 
[16]  Mache, J. R, Minéralogie et propriétés physico-chimiques des smectites de Bana et Sabga (Cameroun). Utilisation dans la décoloration d’une huile végétale alimentaire. PhD. Thesis. France, Université de Liège. 2013.
 
[17]  Oyamta, B., Bayang, D. and Djetarem, M, Étude sur les Ressources minières et pétrolières dans le Mayo Kebbi Ouest, Tchad. Rapport d’étude. 2013.
 
[18]  Kasser, M. Y, Evolution précambrienne de la région du Mayo Kebbi Ouest (Tchad). Un segment de la chaine panafricaine. Ph.D. Thesis France, Muséum d’histoire Naturelle de Paris. 1995.
 
[19]  Kusnir, I. and Moutaye, H. A, Ressources minérales du Tchad: une revue. Journal of African Earth Sciences, 24, 549-562, 1997.
 
[20]  Penaye, J., Kröner, A., Toteu, S. F., Van Schumus, W. R. and Doumnang, J.-C, Evolution of the Mayo Kebbi region as revealed by zircon dating: an early (ca. 740 Ma) Pan-African magmaticarc in south-western Chad. Journal of African Earth Sciences, 44, 530-542, 2006.
 
[21]  Pouclet, A., Vidal, M., Doumnang, J. C., Vicat, J. P. and Tchameni, R, Neoproterozoic crustal evolution in Southern Chad: Pan-African ocean basin closing, arc accretion and late to post-orogenic granitic intrusion. Journal of African Earth Sciences, 44, 543-60, 2006.
 
[22]  Isseini, M, Croissance et différenciation crustale au Néoprotérozoïque Exemple du domaine panafricain du Mayo kebbi au Sud-Ouest du Tchad. Ph.D. Thesis, Nancy, Université Henry Poincaré. 2011.
 
[23]  Doumnang, J. C, Géologie des formations néoprotérozoïques du Mayo Kebbi (sud-ouest du Tchad): Apports de la pétrologie et de la géochimie, implications sur la géodynamique au Panafricain. Ph.D. Thesis, Orléans, Université d'Orléans, 2006.
 
[24]  Toteu, S. F., Penaye, J., Deloule, E., Van Schumus, W., R., Tchameni R, Diachronous evolution of volcano-sedimentary basins north of the Congo craton: Insights from U-Pb ion microprobe dating of zircons from the Poli, Lom and Yaounde Groups Cameroon). Journal of African Earth Sciences, 44, 428-442, 2006.
 
[25]  Schneider, J. L. and Wolff, J.P, Carte géologique et cartes hydrogéologiques à 1/500000 de la République du Tchad. Mémoire explicatif BRGM. 1992.
 
[26]  Maurin, J. C. and Guiraud, R, Relationships between tectonics and sedimentation in the Barremo-Aptian intracontinental basins of northern Cameroon. Journal of African Earth sciences, 10, 331-340, 1990.
 
[27]  Moore, D. M, and Reynolds, R. C. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford University Press, 1989.
 
[28]  Ogier, S, Diagenèse précoce en domaine lacustre: étude des composés minéraux et organiques des sédiments récents du lac d’Aydat (Puy de Dôme, France). Ph.D. Thesis, France: Université d’Orléans. 1999.
 
[29]  Mache, J. R., Signing, P., Njoya, A., Kunyukubundo, F., Mbey, J. A., Njopwouo, D., & Fagel, N. Smectite clay from the Sabga deposit (Cameroon): mineralogical and physicochemical properties. Clay Minerals, 48(3), 499-512, 2013.
 
[30]  Ekomane, E., Bomolomo, M.V., Zo’o Zame, P., Bisse, S., Angtouzou, W, Mineralogy and geochemistry of recent detrital sediments from mayo sina (Chad): implication for the source rock location. International Journal of Multidisciplinary Research and Development, 3, 27-42, 2016.
 
[31]  Ndjigui, P.D., Beauvais, A., Fadil-Djenabou, S. and Ambrosi, J.-P. Origin and evolution of Ngaye River alluvial sediments, Northern Cameroon: Geochemical constraints. Journal of African Earth Sciences, 100, 164-178, 2014.
 
[32]  Beauchamp, J, Facteurs contrôlant la nature des argiles formées. Université de Picardie. 2002.
 
[33]  Allen, P. A, Earth surface processes. Oxford: Blackwell, 1997.
 
[34]  Aliprandi, G, Matériaux réfractaires et céramiques techniques. Eléments de céramurgie et de Technologie, Editions Septima, Paris, 11-20, 1979.
 
[35]  Caillère, S., Henin, S. and Rautureau, M, Minéralogie des argiles: Classification et nomenclature (Tome 2), Ed. Masson, Paris, 9, 107-114, 1982.
 
[36]  Gobat, J.M., Aragno, M. and Matthe y, W, Le sol vivant, base de pédologie. Presse polytechnique et universitaire romande, 592p. 2003.
 
[37]  Wilson, M.J, The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 7-25, 1998.