Journal of Geosciences and Geomatics. 2022, 10(1), 65-73
DOI: 10.12691/JGG-10-1-5
Original Research

Microchemical Fingerprint of Magnetite Bearing Iron Ore Deposit from the Sanaga Prospect, Southern Cameroon: Assessment of Iron Ore-forming Conditions

Bravo Martin Mbang Bonda1, , Akumbom Vishiti1, Mbai Simon Joel1, Bayiga Elie Constantin2, Ngon Ngon Gilbert François2 and Etamé Jacques1, 2

1Department of Civil Engineering, University Institute of Technology, University of Douala, P.O.Box 8698, Douala, Cameroon

2Department of Earth Sciences, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon

Pub. Date: April 08, 2022

Cite this paper

Bravo Martin Mbang Bonda, Akumbom Vishiti, Mbai Simon Joel, Bayiga Elie Constantin, Ngon Ngon Gilbert François and Etamé Jacques. Microchemical Fingerprint of Magnetite Bearing Iron Ore Deposit from the Sanaga Prospect, Southern Cameroon: Assessment of Iron Ore-forming Conditions. Journal of Geosciences and Geomatics. 2022; 10(1):65-73. doi: 10.12691/JGG-10-1-5

Abstract

The Sanaga magnetite bearing iron ore deposit is hosted in the eburnean Nyong complex which constitutes the northwestern edge of the Congo Craton. It is compose predominantly of magnetite bearing quartzite and magnetite-biotite gneisses related to charnockites and amphibole orthogneisses. In this study we use the composition of the magnetite bearing ore to determine their origin and ore formation process. A deposit model is also proposed for a better understanding of the emplacement of the iron ore. EMPA analysis on magnetite reveal variable amount of V, Ti, Al, and Mn. Most of the samples present Ti contents > 0.1%, this indicates a hydrothermal overprint. Although the texture and chemical composition of the magnetite bearing rocks neither represents typical skarn nor BIFs, on Ca + Al + Mn vs Ti + V and Ni + Cr vs Ti + V discrimination diagrams the magnetite reveals a double affinity for skarn and BIF. Elevated contents of Al, Mn and Mg in the magnetite signify crustal contamination while BIF signatures are related to hydrothermal activities. The variable content of V and Ti/V ratio suggests a mixture of reducing and oxidizing environments. On the Al + Mn vs Ti + V binary diagram the magnetite bearing ore reveal hydrothermal temperatures that vary between 200-300°C and 300-500°C. This suggests their precipitation from hydrothermal fluid with medium to high temperature and slight enrichment in Al and Ti. Integrating the data obtained from studies such as regional geology, ore geology and mineral microchemistry, we suggest that the Sanaga magnetite bearing iron ore deposit is similar to the Lake Superior iron ore type and was formed from transgression-regression in back arc basin or continental margin.

Keywords

magnetite, trace element, hydrothermal alteration, Sanaga prospect, Cameroon

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Nadoll, P., Angerer, T., Mauk, J.L., French, D., Walshe, J., The chemistry of hydrothermal magnetite: a review, Ore Geology Review, 2014, 61, 1-32.
 
[2]  McClenaghan, M.B., Indicator mineral methods in mineral exploration. Geochemical Exploration Environmental Analysis 5, 2005, 233-245.
 
[3]  Dupuis, C., Beaudoin, G., Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral. Deposita 46, 2011, 319-335.
 
[4]  Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E., Box, S.E., Geochemistry of magnetitefrom hydrothermal ore deposits and host rocks of the Mesoproterozoic BeltSupergroup, United States Economic Geology 107 (6), 2012, 1275-1292.
 
[5]  Lindsley, D.H., 1991. Oxide minerals: petrologic and magnetic significance, Review Mineralogy, Mineralogy Society American 25, 509.
 
[6]  Suh, C. E., Cabral, A. R., Shemang, E. M., Mbinkar, L. and Mboudou, G. G., M., Two contrasting iron-ore deposits in the Precambrian mineral belt of Cameronn, West Africa. Exploration and Mining Geology 17, 2008, 197-207.
 
[7]  Suh, C. E., Cabral, A., Ndime, E. N., Geology and ore fabrics of the Nkout high grade haematite deposit, southern Cameroon. Smart Science Exploration Mineral 1, 2009, 558-560.
 
[8]  Chombong, N.N. and Suh, C.E., 2883 Ma commencement of BIF deposition at the Northern edge of Congo Craton, Southern Cameroon: New zircon SHRIMP data constraint from metavolcanics, Episodes, 36, 2013, 47-57.
 
[9]  Ilouga, C., Suh, C.E., Tanwi, G.R., Textures and Rare Earth Elements Composition of Banded Iron Formations (BIF) at Njweng Prospect, Mbalam Iron Ore District, Southern Cameroon. International Journal of Geosciences 4, 2013, 146-165.
 
[10]  Ilouga D. C. I., Ndong Bidzang F., Ziem A Bidias L. A., Olinga J. B., Tata E., Minyem D., Geochemical Characterization of a Stratigraphic Log Bearing Iron Ore in the Sanaga Prospect, Upper Nyong Unit of Ntem Complex, Cameroon, Journal of Geosciences and Geomatics, vol 5, 2017, 218-228
 
[11]  Kelvin, F.E.A., Wall, F., Gavyn, K.R. and Moon, C.J., Quantitative mineralogical and chemical assessment of the Nkout iron ore deposit, southern Cameroon. Ore Geology Reviews, 64, 2014, 25-39.
 
[12]  Ganno, S., Ngnotue, T., Kouankap, N.G.D., Nzenti, J.P., Notsa, F.M., Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: Implications for the origin and depositional environment. Chemie der Erde 75, 2015, 375-387.
 
[13]  Ganno, S., Moudioh, C., Nzina Nchare, A., Kouankap Nono, G.D. and Nzenti, J.P., Geochemical Fingerprint and Iron Ore Potential of the Siliceous Itabirite from Palaeoproterozoic Nyong Series, Zambi Area, Southwestern Cameroon. Resource Geology, 66, 2015, 71-80.
 
[14]  Ganno S., Njiosseu, T.E.L., Kouankap, N.G.D., Djoukouo, S.A., Moudioh C., Ngnotué T., Nzenti J.P., A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry. Ore Geology Reviews 80, 2017, 860-875.
 
[15]  Anderson, K. F. E., Frances, W., Rollinson G. K., Charles J. M., Quantitative mineralogical and chemical assessment of the Nkout Iron ore deposit, southern Cameroon. Ore Geology Reviews 62, 2014, 25-39.
 
[16]  Ndime E. N., Ganno, S., Soh, T. L., Nzenti, J. P., Petrography, lithostratigraphy and major element geochemistry of Meso-archean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo Craton, Central West Africa. Journal of Earth Sciences 148, 2018, 80-98.
 
[17]  Ndime, E. N., Ganno, S., Nzenti, J. P., Geochemistry and Pb-Pb geochronology of the Neoarchean Nkout West metamorphosed banded iron formation, Southern Cameroon. International Journal of Earth Sciences 108, 2019, 1551-1570.
 
[18]  Soh, T. L., Nzepang, T. M., Chongtao, W., Ganno, S., Ngnotued, T., Kouankap, N. G. D., Shaamu, J. S., Zhang, J., Nzenti, J. P., Geology and geochemical constrains on the origin and depositional setting of the Kpwa-Atog Boga banded iron formations (BIFs), northwestern Congo Craton, southern Cameroon. Ores Geology Reviews, 95, 2018, 620-638.
 
[19]  Tchatchueng, R., Ngnotué, T., Njiosseu, E.L.T., Ganno, S., Wabo, H. and Nzenti, J.P, Contrasting Depositional Environment of Iron Formation at Endengue Area, NW Congo Craton, Southern Cameroon: New Insights from Trace and Rare Earth Elements Geochemistry. International Journal of Geosciences, 12, 2021, 280-306.
 
[20]  Ndema M.J.L. and Aroke E.A., Petrology and Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Mineralization from the Paleoproterozoic Nyong Serie (Congo Craton, South Cameroon), Pout Njouma Area (Edea North): Evidence for Iron Ore Deposits. International Journal of Research and Innovation in Applied Science, 5, 2020, 19 p.
 
[21]  Soh Tamehe, L., Chongtao, W., Ganno, S., Jeremia Simon, S., Kouankap Nono, G.D., Nzenti, J.P., Lemdjou, Y.B., and Htun Lin, N., Geology of the Gouap iron deposit, Congo Craton, southern Cameroon: Implications for iron ore exploration: Ore Geology Reviews, v. 107, 2019, 1097-1128.
 
[22]  N.N. Chombong, E.C. Suh, C.D.C. Ilouga, New detrital zircon U-Pb ages from BIF-related metasediments in the Ntem complex (Congo Craton) of southern Cameroon, West Africa, Natural science 5, 2013, 835-847.
 
[23]  Chombong, N. N., Suh C. E., Lehmann B., Vishiti A., Ilouga D. C., Shemang E. M., Tantoh B. S. and A. C. Kedia. Host rock geochemistry, texture and chemical composition of magnetite in iron ore in the Neoarchaean Nyong unit in southern Cameroon. Applied Earth Science, 2017, 1743-2758.
 
[24]  Ndema M.J.L. and Mbonjoh T.M.,. Assessment of Banded Iron Formations around Gouap Area asPotential High-Grade Iron Ore (Nyong Serie, Congo Craton -South Cameroon). International Journal of Progressive Sciences and Technologies, 22, 2020, 87-110.
 
[25]  B. M. M. Bonda, Etame, J., Kouske, A. P., Bayiga, E. C., Ngon Ngon, G. F., Mbaï, S. J., Gérard, M., Ore Texture, Mineralogy and Whole Rock Geochemistry of the Iron Mineralization from Edea North Area, Nyong Complex, Southern Cameroon: Implication for Origin and Enrichment Process. International Journal of Geosciences, 8, 2017, 659-677.
 
[26]  Toteu, S.F., Van Schmus, R.W., Penaye, J., Nyobe, J.B., U-Pb and Sm-Nd evidence for Eburnean and Pan-African high grade metamorphism in cratonic rocks of southern Cameroon. Precambrian research, 67, 1994, 321-347.
 
[27]  Lerouge, C., Cocherie A., Toteu, S. F., Penaye, J., Milési J. P., Tchameni, R., Nsifa, E. N., Fanning, C. M., Deloule, E., Shrimp U–Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: consequences for the Eburnean–Transamazonian belt of NE Brazil and Central Africa. Journal of African Earth Sciences 44, 2006, 413-427.
 
[28]  Penaye, J., Toteu, S.F., Tchameni, R., Van Schmus, W.R., Tchakounté, J., Ganwa, A., Minyem, D., Nsifa, E.N., The 2.1Ga West Central African Belt in Cameroon: extension and evolution. Journal of African Earth Sciences 39, 2004, 159-164.
 
[29]  Ndema Mbongue J. L., Ngnotue T., Ngo Nlend C. D., Nzenti J. P., Cheo Suh E., Origin and Evolution of the Formation of the Cameroon Nyong Series in the Western Border of the Congo Craton. Journal of Geosciences and Geomatics, Vol. 2, 2014, 62-75.
 
[30]  Owona, S., Archaean, Eburnean and Pan-African features and relationships in their junction zone in the South of Yaounde (Cameroon). Ph.D. Thesis. University of Douala, Cameroon, 2008, 232 p.
 
[31]  Feybesse, J.L., Johan, V., Maurizot, P., Abessolo, A., Mise en évidence d’une nappe syn-métamorphe d’âge éburnéen dans lapartie Nord-Ouest du Craton zaïrois, Sud-Ouest Cameroun. In: Lesformations birrimiennes en Afrique de l’Ouest, journée scientifique, compte rendu de conferences. Occasional Publications CIFEG, 1986/10, 1986, pp. 105-111.
 
[32]  Omang, O.B., Stream sediment geochemistry and placer gold microchemical signature in Eastern and Southern Cameroon. Ph.D. Thesis, University of Buea, Cameroon. Unpublished, 2015, 290 p.
 
[33]  Maurizot, P., Abessolo, A., Feybesse, J.L., Johan, V., Lecomte, P., Etude et prospection minière du Sud-Ouest Cameroun. Synthèse des travaux de 1978 à 1985. BRGM Report 85 CMR 066, 1986.
 
[34]  Marvine N.T., Sylvestre G., Olugbenga A.O., Evine L.T.N., Landry S.T., Brice K.W., Arnold S.M.M. and Jean P.N., Petrogenesis and tectonic setting of the Paleoproterozoic KelleBidjoka iron formations, Nyong group greenstone belts, southwestern Cameroon. Constraints from petrology, geochemistry, and LA-ICP-MS zircon U-Pb geochronology, International Geology Review, 2020.
 
[35]  Rudnick, R. L., and Gao, S., Composition of the Continental Crust. In: Holland, H.D., 2003.
 
[36]  Duparc, Q., Dare, S. A.S., Cousineau, Pierre, A., Goutier, A., Magnetite chemistry as a provenance indicator in Archean metamorphosed sedimentary rocks. Journal of Sedimentary Research 86, 2016, 542-563.
 
[37]  Dare, S.A.S., Barnes, S.J., Méric, J., Néron, A., Beaudoin, G., Boutroy, E., The use of trace elements in Fe-oxides as provenance and petrogenetic indicators in magmatic and hydrothermal environments. Mineral Deposit Research For a High-Tech World, 12th SGA Biennial Meeting 2013. Proceedings, Volume 1, 2014, 256-259.
 
[38]  Canil D, Grondahl C, Lacourse T, Pisiak L.K., Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada. Ore Geology Reviews 72, 2016, 1116-1128.
 
[39]  Grigsby, J., Detrital magnetite as a provenance indicator. Journal of Sedimentary Petrology 60, 1990, 940-951.
 
[40]  Zhen-Ju Z., Hao-Shu T., Yan-Jing C., Zheng-Le C., Trace elements of magnetite and iron isotopes of the Zankan iron deposit, westernmost Kunlun, China: A case study of seafloor hydrothermal iron deposits. Ore Geology Reviews 80, 2016, 1191-1205.
 
[41]  Verlaguet, A., Brunet, F., Goffé, B., Murphy, W.M., Experimental study and modelling of fluid reaction paths in the quartz–kyanite ± muscovite–water system at 0.7 GPa in the 350-550°C range: implications for Al selective transfer during metamorphism. Geochimical Cosmochimical Acta 70, 2006, 1772-1788.
 
[42]  Ndema M.J.L. and Mbonjoh T.M., Assessment of Banded Iron Formations around Gouap Area asPotential High-Grade Iron Ore (Nyong Series, Congo Craton -South Cameroon). International Journal of Progressive Sciences and Technologies, 22, 2020, 87-110.
 
[43]  Gross, G. A. and Mcleod, C. R., A preliminary assessment of the chemical composition of iron formation in Canada. Canadian Mineralogist 18, 1980, 223-229.
 
[44]  Armstrong, H. A., Owen, A. W., Floyd, J. D., Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: implications for origin and significance to the Caledonian Orogeny. Journal of of Geology Society 156 (3), 1999, 549-560.