Journal of Geosciences and Geomatics. 2022, 10(1), 45-64
DOI: 10.12691/JGG-10-1-4
Original Research

Molecular Organic Geochemistry of Mudstones from Koum Basin, Cameroon: Paleo-environmental, Age, Maturity and Genetic Implication

Nowel Yinkfu Njamnsi1, 2, , Njoh Oliver Anoh1, George Ngiamte Lemewihbwen1, Cheo Emmanuel Suh1, 3 and Simon Fai Tamfu4

1Department of Geology, Mining, and Environmental Science, University of Bamenda, P.O. Box 39, Bamenda, Northwest Region, Cameroon

2Engineering and Mobilization of Local Resources Section, Pipeline Steering and Monitoring Committee, National Hydrocarbons Corporation (SNH), P.O. Box 955, Yaoundé, Centre Region, Cameroon

3Economic Geology Unit, Department of Geology, University of Buea, P.O. Box 63 Buea, Southwest Region, Cameroon

4S T Exploration and Production Consulting Services, P.O. Box 5174 Nlongkak – Yaoundé

Pub. Date: March 23, 2022

Cite this paper

Nowel Yinkfu Njamnsi, Njoh Oliver Anoh, George Ngiamte Lemewihbwen, Cheo Emmanuel Suh and Simon Fai Tamfu. Molecular Organic Geochemistry of Mudstones from Koum Basin, Cameroon: Paleo-environmental, Age, Maturity and Genetic Implication. Journal of Geosciences and Geomatics. 2022; 10(1):45-64. doi: 10.12691/JGG-10-1-4

Abstract

Hydrocarbon resources are still invaluable to the economic growth and social development of most producing countries. Keeping in pace with studies of global source rock development for resourcing future generations, exposed organic-rich, dark-grey mudstones were collected from the Koum Basin and on the basis of their total organic carbon (TOC) content, noted to range between 5.48-6.91 wt.%, organic matter (OM) was extracted and characterized in order to determine the OM source input, paleo-depositional conditions, thermal maturity, age, by which the hydrocarbon potential was deduced using gas chromatography (GC), medium pressure liquid chromatography (MPLC) and gas chromatography-mass spectrometry (GC-MS) techniques. The extract yield and bitumen composition range between 4291–5116 ppm which depicts a fair to very good source rock generative potential, dominated by saturates (41.86-45.96%), aromatics (9.36-26.36%), and resin/asphaltene (31.78-44.68%) pointing to normal paraffinic generated hydrocarbons. Source-related molecular markers indicate a mixed aquatic algae and clastic-rich terrigenous OM input, preserved under sub-oxic to oxic conditions, typical of fluvial-deltaic lacustrine systems. Gammacerane/Hopane ratios (0.26-0.27), support the fact that the lacustrine source rocks were likely developed under somewhat restricted circulation and moderate/low salinity. From maturity ratios of Ts/(Ts + Tm), C32 22S/(22S + 22R) homohopane, the 20S/(20S + 20R) and ββ/(ββ + αα) C29 and Methyl Phenanthrene Index with vitrinite reflectance value equivalent of 0.46-0.60%, it can give a conclusion that the analyzed extracts are from early thermal cracking of OM at the incipient oil window. Based on age-specific biomarkers, the extracts were probably derived from the Early Cretaceous. Accordingly, findings are comparable with some active Cretaceous lacustrine source rocks in some basins within the West Central African Rift system (WCARS) and therefore provide a better understanding of source rock development during the Cretaceous in a regional context. Nevertheless, the deeper unexposed organic-rich units of the Koum Basin may have a pod of active source rock.

Keywords

Source rocks, Biomarkers, Organic matter, Thermal maturity, Paleo-redox conditions, Cretaceous Koum Basin

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  United Nations,2015. Transforming Our World: the 2030 Agenda for Sustainable Development. A/RES/70/1. UnitedNations, https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20 for%20Sustainable%20Development%20web.pdf.
 
[2]  Lloyd, P.J., 2017, The Role of Energy in Development. Journal of Energy in Southern Africa, v. 28, no. 1, p.-54. (XURBB_643990).
 
[3]  Lambert I., Durrheim R., Godoy M., Kota M., Leahy P., Ludden J., Nickless E., Oberhaensi R., Anjian W., and Williams N., 2013, Resourcing Future Generations: A proposed new IUGS Initiative. Episodes, 36/2, 82-86.
 
[4]  Magoon L.B and Dow W.G., 1994. The Petroleum System. In: Magoon, L.B. and Dow, W.G., Eds., The Petroleum System-From Source to Trap, AAPG Memoire 60, 3-24.
 
[5]  Killops, S., and Killops, V., (2005). Introduction to Organic Geochemistry. (2nd ed.), UK: Blackwell Publishing, 393 P.
 
[6]  Peters K.E., Walters C.C., and Moldowan J.M., 2005. The biomarker guides. Volume 1, Biomarkers and isotopes in the environment and human history. Volume 2, Biomarkers and isotopes in petroleum exploration and Earth history (2d ed.; first edition published 1993 by Chevron Texaco): Cambridge University Press, 1132 p. ISBN 0 521 83763 4.
 
[7]  Adegoke, A. K., Yandoka, B. M. S., Abdullah, W. H., Akaegbobi, I. M., (2014). “Molecular geochemical evaluation of Late Cretaceous sediments from Chad (Bornu) Basin, NE Nigeria: implications for paleodepositional conditions, source input and thermal maturation” Arabian Journal of Geoscience.
 
[8]  Tissot B.P., Welte D.H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin.
 
[9]  Hunt J.M., 1995. Petroleum geochemistry and geology, 2nd edn. W. H. Freeman and Company, New York, p 743.
 
[10]  Olcott A.N, 2007. The utility of lipid biomarkers as paleoenvironmental indicators: Palaios, v. 22, p. 111-113.
 
[11]  Peters K.E., and Moldowan J.M., 1993. The Biomarker Guide, Interpreting molecular fossils in petroleum and ancient sediments: Prentice Hall, 363 p.
 
[12]  Hughes W.B., Holba A.G., and Dzou L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks: Geochimica et Cosmochimica Acta, v. 59, p.3581-3598.
 
[13]  Summons R.E., Jahnke L.L., Hope J.M. and Logan G.A., 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554-557.
 
[14]  Holba A.G., Tegelaar E., Ellis L., Singletary M.S., Albrecht P., 2000. Tetracyclic polyprenoids: indicators of freshwater (lacustrine) algal input. Geology 28, 251-254.
 
[15]  Ghassal B.I., Littke R., El Atfy H., Sindern S., Scholtysik G., El Beialy S., El Khoriby E., 2018. Source rock potential and depositional environment of Upper Cretaceous sedimentary rocks, Abu Gharadig Basin, Western Desert, Egypt: An integrated palynological, organic and inorganic geochemical study: International Journal of Coal Geology v. 186, p. 14-40.
 
[16]  Nytoft H.P., Kildahl-Andersen G., Lindström S., Rise F., Bechtel A., Mitrović D., Nataša D., Dragana Z., Stojanović K.A., 2019. Dehydroicetexanes in sediments and crude oils: Possible markers for Cupressoideae. Organic Geochemistry, 129, 14-23.
 
[17]  Nytoft H.P., Fyhn M.B.W., Hovikoski J., Rizzi M., Abatzis I., Tuan H.A., Tung N.T., Huyen N.T., Cuong T.X., Nielsen L.H., 2020. Biomarkers of Oligocene lacustrine source rocks, Beibuwan-Song Hong basin junction, offshore northern Vietnam. Mar. Petrol. Geol. 114, 104196.
 
[18]  Körmös Sachsenhofer R.F., Bechtel, A., Radovics, B. G., Milota, K., & Schubert, F., 2021. Source rock potential, crude oil characteristics, and oil-to-source rock correlation in a Central Paratethys sub-basin, the Hungarian Palaeogene Basin (Pannonian basin). Marine and Petroleum Geology, 127, 104955.
 
[19]  Ndip E.A., Agyingi C.M., Nton M.E, and Oladunjoye M.A., 2021. Biomarker Geochemical Evaluation of Organic Rich Shales in Mamfe Basin, Cameroon. Journal of Geosciences and Geomatics. 2021; 9(1): 28-44.
 
[20]  Farrimond P., Taylor A., and Telnæs N., 1998. Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry 29, 1181-1197.
 
[21]  Dahl J.E., Moldowan J.M., Teerman S.C., McCaffrey M.A., Sundararaman P., Peña M, and Stelting C.E., 1994. Source rock quality determination from oil biomarkers. 1. An example from the Aspen Shale, Scully's Gap, Wyoming: American Association of Petroleum Geologists Bulletin, 78(10), 1994, pp. 1507-1526.
 
[22]  McCaffrey, M. A., Moldowan, J. M., Lipton, P. A., Summons, R. E., Peters, K. E., Jeganathan, A., & Watt, D. S., 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58(1), 529-532.
 
[23]  Grantham P., and Wakefield L., 1988. Variations in the steranes carbon number distributions of marine source rock-derived crude oils through geological time. Organic Geochemistry, 12, 61-73.
 
[24]  Moldowan J.M., Dahl J., Huizinga B. and Fago F., 1994. The molecular fossil record of Oleanane and its relation to angiosperms: Science, v. 265, p. 768-771.
 
[25]  Holba A.G., Tegelaar E., Huizinga B.J., Moldowan J.M., Singletary M.S., McCaffrey M.A., and Dzou LI, 1998b. 24-norcholestanes as Age-sensitive Molecular Fossils, Geology, Vol. 6, pp. 783-786.
 
[26]  Holba A.G., Ellis L., Dzou L.I.P., Hallam A., Masterson W.D., Françu J., and Fincannon A.L., 2001. Extended tricyclic terpanes as age discriminators between Triassic, Early Jurassic, and Middle-Late Jurassic oils. Proceedings of the 20th International Meeting on Organic Geochemistry, September 10-14, Nancy, France, Abstract v. 1, 464.
 
[27]  Moldowan J.M and Jacobson S.R, 2000. Chemical Signals for Early Evolution of Major Taxa: Biosignatures and Taxon-Specific Biomarkers. International Geology Review, 42(9), 805-812.
 
[28]  Connan, J., (1993). “Chapter 1.7: Molecular Geochemistry in Oil Exploration”. In Applied Petroleum Geochemistry, edited by Bordenave M. L., P.175-204. Editions Technip, 27 rue Ginoux 75015, Paris.
 
[29]  Bessong, M., Hell, J. V., Samankassou, E., Feist-Burkhardt, S., Eyong, J. T., Ngos, S. I., Ndjeng, E., 2018, Hydrocarbon potential, palynology and palynofacies of four sedimentary basins in the Benue Trough, northern Cameroon. Journal of African Earth Sciences, 139, 73-95.
 
[30]  Guiraud R., and Bellion Y., 1995. Late Carboniferous to Recent Geodynamic Evolution of the West Gondwanian, Cratonic, Tethyan Margins. In: Nairn, A., Dercourt, J. and Vrielynck, B., Eds., The Ocean Basins and Margins, Vol. 8, The Tethys Ocean, Plenum, New York, 101-124.
 
[31]  Genik G.J., 1993. Petroleum Geology of Cretaceous-Tertiary Rift Basins in Niger, Chad and the Central African Republic. American Association of Petroleum Geologists Bulletin, 77, 1405-1434.
 
[32]  Fairhead J.D., 2020. Regional tectonics and basin formation: the role of potential field studies-an application to the Mesozoic West and Central African Rift System. Regional Geology and Tectonics: Principles of Geologic Analysis, 541-556.
 
[33]  Congleton J.D., 1990. Vertebrate paleontology of the Koum Basin, northern Cameroon, and archosauian paleobiogeography in the early Cretaceous. Master thesis, Southern Methodist University. 258 pp.
 
[34]  Jacobs L.L., Winkler D.A, and Gomani E.M., 1996. Cretaceous dinosaurs of Africa: Examples from Cameroon and Malawi. Memoirs of the Queensland Museum 39(3): 595-610. Brisbane. ISSN 0079-8835.
 
[35]  Maurin, J. C., and Guiraud, R., 1990. Relationships between tectonics and sedimentation in the Barremo-Aptian intracontinental basins of Northern Cameroon. Journal of African Earth Sciences (and the Middle East), 10(1-2), 331-340.
 
[36]  Schlische R.W., and Olsen P.E., 1990. Quantitative filling model for continental extensional basins with applications to early Mesozoic rifts of eastern North America: Journal of Geology, v. 98, p. 135-155.
 
[37]  Sarki Yandoka B.M., Abubakar M.B., Abdullah W.H., Amir Hassan M.H., Adamu B.U., Jitong J.S., Aliyu A.H., Adegoke A.K., 2014. Facies analysis, palaeoenvironmental reconstruction, and stratigraphic development of the Early Cretaceous sediments (Lower Bima Member) in the Yola Sub-basin, Northern Benue Trough, NE Nigeria. Journal of African Earth Sciences, 96: 168-79.
 
[38]  Radke M., Willsch H., and Welte D.H., 1980. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry, 52(3), 406-411.
 
[39]  Weiss H.M., Wilhelms A., Mills N, Scotchmer J., Hall P.B., Lind K., Brekke T., 2000. NIGOGA - The Norwegian Industry Guide to Organic Geochemical Analyses, Edition 4. ed. Norsk Hydro, Statoil, Geolab Nor SINTEF Petroleum Research and the Norwegian Petroleum Directorate.
 
[40]  Yang S., Bi L., Li C., Wang Z., and Dou Y., 2015. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the Late Quaternary. Geological Society, London, Special Publications, 429(1), 137-152.
 
[41]  Rashid M.A., 1979. Pristane-phytane ratios in relation to source and diagenesis of ancient sediments from the Labrador Shelf. Chemical Geology, 25(1-2), 109-122.
 
[42]  Shanmugam G. (1985) Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia: AAPG Bulletin, v. 69, p. 1241-1254.
 
[43]  Moldowan, J. M., Seifert, W. K., and Gallegos, E. J., (1985). “Relationship between petroleum composition and depositional environment of petroleum source rocks”, AAPG Bulletin, 69 (8): P. 1255-1268.
 
[44]  Mello, M.R. and Maxwell, J.R. (1990) Organic geochemical biological marker characterization of source rocks and oils derived from lacustrine environments in the Brazilian continental margin. In: Lacustrine Basin Exploration - Case Studies and Modern Analogues (Ed. by B.J. Katz); AAPG Memoir, pp. 77-98.
 
[45]  Hills, I.R. and Whitehead, E.V. (1966) Triterpanes in optically active petroleum destillates. Nature, 209, 977-979.
 
[46]  Brassell, S.C., Sheng, G., Fu, J. and Eglinton, G. (1988) Biological markers in lacustrine Chinese oil shales. In: Lacustrine Petroleum Source Rocks (Ed. by A.J. Fleet, K. Kelts and M.R. Talbot), pp. 299-308. Blackwell.
 
[47]  Sinninghe Damsté J.S., Kenig F., Koopmans M.P., Köster J., Schouten S., Hayes J.M., de Leeuw J.W., 1995. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 59(9), 1895-1900.
 
[48]  Newell, K. D., Burruss, R. C., and Palacas, J. G., (1993). “Thermal maturation and Organic Richness of Potential Petroleum Source Rocks in Proterozoic Rice Formation, North American Mid-Continent Rift System, Northeastern Kansas” AAPG Bulletin, 77 (11): P. 1922-1941.
 
[49]  Rabbani, A. R., Kotarba, M. J., Baniasad A. R., Hosseiny, E., and Wieclaw, D., (2014). “Geochemical Characteristics and genetic types of the crude oils from the Iranian sector of the Persian Gulf” Journal of Organic Geochemistry, 70: P. 29-43.
 
[50]  Zumberge J.E., 1987. Prediction of source rock characteristics based on terpane biomarkers in crudeoils: A multivariate statistical approach: Geochimica et Cosmochimica Acta, v. 51, p. 1625-1637.
 
[51]  Radke M., and Welte D.H., 1983. The Methylphenanthrene Index (MPI): A maturity parameter based on aromatic hydrocarbons: Organic Geochemistry 1981, pp. 504-512.
 
[52]  Seifert W.K., and Moldowan J.M., 1986. Use of Biological Markers in Petroleum Exploration. Methods in Geochemistry and Geophysics, v. 24, p. 261-290.
 
[53]  Moldowan J.M., Dahl J., Fago F.J., Shetty R., Watt D.S., Jacobson S.R., Huizinga B.J., McCaffrey M.A. and Summons R.E., 1995. Correlation of biomarkers with geological age. Abstract. 17th International European Association of Organic Geochemists Meeting, San Sebastian, Spain, p.418-420.
 
[54]  Holba A.G., Singletary S., Carrigan W., Dzou L.I.P, and Tegelaar E., 2003b. C28 Methyl Steranes as Age Diagnostic Indicators in Marine Oils, Abstracts, 21st International Meeting on Organic Geochemistry, September 8th-12th, 2003, Krakow, Poland, p. PII/110.
 
[55]  Abubakar M.B., Dike E.F.C., Obaje N.G., Wehner H. and Jauro A., 2008. Petroleum Prospectivity of Cretaceous Formations in the Gongola Basin, Upper Benue Trough, Nigeria: An Organic Geochemical Perspective on a Migrated Oil Controversy. Journal of Petroleum Geology, 31(4), 387-407.
 
[56]  Bata T., Parnell J., Samaila N.K., Abubakar M.B and Maigari A.S., 2015. Geochemical evidence for a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria. Journal of African Earth Sciences, 111, 148-155.
 
[57]  Dou Li, Cheng D., Wang J., Du Y., Xiao G., and Wang R., 2020. Petroleum systems of the Bongor Basin and the Great Baobab Oilfield, Southern Chad. Journal of Petroleum Geology, Volume 43, Issue 3, Pages 301-321.