Journal of Geosciences and Geomatics. 2022, 10(1), 31-44
DOI: 10.12691/JGG-10-1-3
Original Research

Petrology and Geochemistry of the Granitic Rocks from the Itremo Domain, Central Madagascar

Désiré Alphonse Rakotondravaly1, 2, and Roger Randrianja2

1Directorate of Operations Monitoring, Ministry of Mines and Strategic Resources, Antananarivo, Madagascar

2Doctoral School of “Ingénierie et Geosciences”, University of Antananarivo, Antananarivo, Madagascar

Pub. Date: March 17, 2022

Cite this paper

Désiré Alphonse Rakotondravaly and Roger Randrianja. Petrology and Geochemistry of the Granitic Rocks from the Itremo Domain, Central Madagascar. Journal of Geosciences and Geomatics. 2022; 10(1):31-44. doi: 10.12691/JGG-10-1-3

Abstract

Granitic rocks of the Ibity, Tsarasaotra, and Ambatofinandrahana areas of the Itremo domain, in the Precambrian basement of Madagascar were characterized by using the naked eye, microscopic observations, and whole rock chemical analyses with the aim of understanding their petrogenesis, their interrelations, and their membership in the known magmatic suites in the Itremo domain. The granitic rocks of this study are mainly composed of monzonitic rocks for the Tsarasaotra and granite for the other areas. Major minerals identified are alkali feldspars, quartz, plagioclase, and accessory minerals are amphiboles, micas, pyroxene, iron-titanic minerals, titanite, and epidote. Major element compositions are intermediate for the Tsarasaotra monzonitic rocks and felsic for the other rocks. All the studied rocks are silica-saturated with enough aluminum, ferroan, calc-alkalic to alkalic, metaluminous, rarely peraluminous, I-type granitic rocks. Transition elements contents are generally low for the granites and high for the monzonitic rocks, while the compositions of compatible elements are in general high. Chondrite-normalized patterns of REE show high enrichment of LREE and low to moderate enrichment of HREE. The behaviors of major elements (especially Ti, Al, Fe, Mn, Mg, and Ca oxides) and trace elements (Eu anomaly, La/Sm) in the studied rocks show magmatic differentiation signatures in relation to crystal fractionation. These rocks' magmatic sources were most likely enriched-MORBs that evolved through within-plate enrichment for the Tsarasaotra monzonitic rocks and Ifasina granite, and through subduction for the Ibity granite, Tsarasaotra granite dyke, and Antsahakely granite. The succession of these two different processes identified in the studied rocks reveals their membership in the Imorona-Itsindro. Although some of the studied rocks are adakite-like, their characteristics as well as their interrelations indicate magmatic differentiation signatures rather than slab-melting origin. This work is a contribution to the promotion of scientific and geologic research in Madagascar, and it is in perspective of its extension to the geochemical characterization of laterites and mineralization potential identification related to the studied rocks in the Itremo domain as well as in the Antananarivo domain of Madagascar’s Precambrian basement.

Keywords

geochemistry, petrology, rocks, mineral, granite, monzonitic, Itremo, Ibity, Tsarasaotra, Ambatofinandrahana, Ifasina, Antsahakely, Imorona-Itsindro, magmatic, adakitic

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  J. Y. Roig, R. D. Tucker, S. G. Peters, C. Delor and H. Theveniaut, Carte Géologique de la République de Madagascar à 1/1 000 000, Antananarivo: Ministère des Mines, Direction de la Géologie, Projet de Gouvernance des Ressources Minérales, 2012.
 
[2]  R. D. Tucker, J. Y. Roig, B. Moine, C. Delor and S. G. Peters, “A geological synthesis of the Precambrian shield in Madagascar,” Journal of African Earth Sciences, vol. 94, pp. 9-30, 2014.
 
[3]  A. Kröner, E. Hegner, A. S. Collins, B. F. Windley, T. S. Brewer, T. Razakamanana and R. T. Pidgeon, “Age and magmatic history of the Antananarivo Block, Central madagascar, as derived from zircon geochronology and Nd isotopic systematics,” American Journal of Science, vol. 300, pp. 251-288, 2000.
 
[4]  R. D. Tucker, S. G. Peters, J. Y. Roig, H. Théveniaut and C. Delor, Notice Explicative des Cartes Géologiques et Métallogéniques de la République de Madagascar à 1/1 000 000, Antananarivo: Ministère des Mines, 2012.
 
[5]  V. Rasoamalala, S. Salvi, D. Béziat, J. Ursule, M. Cuney, P. Parseval (De), D. Guillaume, B. Moine and J. Andriamampihantona, “Geology of bastnaesite and monazite deposits in the Ambatofinandrahana area, central part of Madagascar: An overview,” Journal of African Earth Sciences, vol. 94, pp. 128-140, 2014.
 
[6]  A. Lacroix, Minéralogie de Madagascar Tome II: Minéralogie Appliquée - Lithologie, 1ère ed., Paris: Librairie Maritime et Coloniale, 1922.
 
[7]  N. Ranorosoa, “Etude minéralogique et microthermométrique des pegmatites du champ de la Sahatany, Madagascar. Thèse de Doctorat.,” Université de Paul Sabatier, Toulouse, 1986.
 
[8]  F. Pezzota, “First attempt to the petrogenesis and the classification of granitic pegmatites of the itremo region (central Madagascar),” Museo di Storia Naturale, Milan, 2005.
 
[9]  C. Biagioni, N. Meisser, F. Nestola, M. Pasero, M. Robyr, P. Roth, C. Schnyder and R. Gieré, “Hydrokenopyrochlore, (◻,#)2Nb2O6·H2O, a new species of the pyrochlore supergroup from the Sahatany Pegmatite Field, Antananarivo Province, Madagascar,” European Journal of Mineralogy, vol. 30, pp. 869-876, 2018.
 
[10]  Z. Burival and M. Novàk, “Secondary blue tourmaline after garnet from elbaite-subtype pegmatites; implications for source and behavior of Ca and Mg in fluids,” Journal of Geosciences, vol. 63, pp. 111-122, 2018.
 
[11]  Assemblée Nationale Madagascar, Création d'une commission d'enquête parlementaire sur la société MAGRAMA, Antananarivo: Assemblée Nationale Madagascar, 2021.
 
[12]  LafargeHolcim, “HOLCIM Madagascar,” 2022. [Online]. Available: https://www.lafargeholcim-io.com/madagascar. [Accessed 27 01 2022].
 
[13]  M. J. Handke, R. D. Tucker and L. D. Ashwal, “Neoproterozoic continental arc magmatism in west-central Madagascar,” Geology, vol. 27, no. 4, pp. 351-354, 1999.
 
[14]  A. McMillan, N. B. W. Harris, M. Holness, L. Ashwal, S. Kelley and R. Rambeloson, “A granite–gabbro complex from Madagascar: constraints on melting of the lower crust,” Contributions to Mineralogy and Petrology, vol. 145, pp. 585-599, 2003.
 
[15]  B. Moine, V. Bosse, J.-L. Paquette and E. Ortéga, “The occurrence of a Tonian–Cryogenian (~850 Ma) regional metamorphic event in Central Madagascar and the geodynamic setting of the Imorona-Itsindro (-800 Ma) magmatic suite,” Journal of African Earth Sciences, vol. 94, pp. 58-73, 2014a.
 
[16]  X.-A. Yang, Y.-C. Chen, S.-B. Liu, K.-J. Hou, Z.-Y. Chen and J.-J. Liu, “U–Pb zircon geochronology and geochemistry of Neoproterozoic granitoids of the Maevatanana area, Madagascar: implications for Neoproterozoic crustal extension of the Imorona–Itsindro Suite and subsequent lithospheric subduction,” International geology Reviews, vol. 57, no. 11-12, pp. 1633-1649, 2015.
 
[17]  D. B. Archibald, A. S. Collins, J. D. Foden, J. L. Payne, P. Holden, T. Razakamanana, B. De Waele, R. J. Thomas and P. E. Pitfield, “Genesis of the Tonian Imorona-Itsindro magmatic suite in central Madagascar: Insight from U-Pb, oxygen and hafnium isotopes in zircon,” Precambrian Research, vol. 281, pp. 312-337, 2016.
 
[18]  A. Lacroix, “Tome I : Géologie Minéralogie Descriptive,” in Minéralogie de Madagascar, A. Challamel, Ed., Paris, Librairie maritime et coloniale, 1922, pp. 1-624.
 
[19]  J. Boast and A. E. M. Nairn, “Chapter 14: An Outline of the Geology of Madagascar,” in The Ocean Basins and Margins - Volume 6: The Indian Ocean, A. E. M. Nairn and F. G. Stehli, Eds., New York - London, Plenum Press, 1982, pp. 649-696.
 
[20]  M. Raunet, Bilan et évaluation des travaux et réalisations en matière de conservation des sols à Madagascar: Facteurs physiques, 1997.
 
[21]  M. Yoshida, “Proterozoic Geology of Madagascar: International Field Workshop of IGCO-348/368 in 1997,” Gondwana Research, vol. 1, no. 2, pp. 299-301, 1998.
 
[22]  A. S. Collins and B. F. Windley, “The Tectonic Evolution of Central and Northern Madagascar and Its Place in the Final Assembly of Gondwana,” The Journal of Geology, vol. 110, no. 3, pp. 325-339, 2002.
 
[23]  B. Moine, A. Nédélec and E. Ortéga, “Geology and metallogeny of the Precambrian basement of Madagascar,” Journal of African Earth Sciences, vol. 94, pp. 1-8, 2014b.
 
[24]  B. Moine, “Caractères de sédimentation et métamorphisme des séries précambriennes épizonales à catazonales du centre de Madagascar (Région d'Ambatofinandrahana),” Université de Nancy I, Nancy, 1974.
 
[25]  R. Cox, R. A. Armstrong and L. D. Ashwal, “Sedimentology, geochronology and provenance of the Proterozoic Itremo Group, central Madagascar, and implications for pre-Gondwana palaeogeography,” Journal of the Geological Society, vol. 155, pp. 1009-1024, 1998.
 
[26]  A. H. Daso, “Géologie d'une plateforme carbonatée métamorphique. Vallée de la Sahatany centre de Madagascar. Etude structurale, pétrographique et géochimique,” Université Paul Sabatier, Toulouse, 1986.
 
[27]  D. B. Archibald, A. S. Collins, J. D. Foden and T. Razakamanana, “Tonian Arc Magmatism in Central Madagascar: The Petrogenesis of the Imorona-Itsindro Suite,” The Journal of Geology, vol. 125, pp. 000-000, 2017.
 
[28]  R. D. Tucker, J.-Y. Roig, C. Delor, Y. Amelin, P. Goncalves, M. H. Rabarimanana, A. V. Ralison and R. W. Belcher, “Neoproterozoic extension in the Greater Dharwar Craton: a reevaluation of the ‘‘Betsimisaraka suture’’ in Madagascar,” Canadian Journal of Earth Science, vol. 48, pp. 389-417, 2011b.
 
[29]  J.-L. Zhou, S. Shao, Z.-h. Luo, J.-B. shao, D.-T. wu and V. Rasoamalala, “Geochronology and geochemistry of Cryogenian gabbros from the Ambatondrazaka area, east-central Madagascar: Implications for Madagascar-India correlation and Rodinia paleogeography,” Precambrian Research, vol. 256, pp. 256-270, 2015a.
 
[30]  A. Nédélec, J.-L. Paquette, P. Antonio, G. Paris and J.-L. Bouchez, “A-type stratoid granites of Madagascar revisited: age, source and links with the breakup of Rodinia,” Precambrian Research, vol. 280, pp. 231-248, 2016.
 
[31]  Emberger, “Notice explicative sur la feuille Itremo-Ambatofinandrahana,” Service Géologique de Tananarive, Antananarivo, 1956.
 
[32]  BGS-USGS-GLW, “Final Report: Révision de la cartographie géologique et minière des zones Nord, Centre, et Centre Est de Madagascar. BGS Report CR/08/078,” Ministère de l'Energie et des Mines (MEM/SG/DG/UCP/PGRM), Keyworth, 2008.
 
[33]  D. B. Archibald, A. S. Collins, J. D. Foden, J. L. Payne, P. Holden and T. Razakamanana, “Late syn-to post-collisional magmatism in Madagascar: The genesis of the Ambalavao and Maevarano Suites,” Geoscience Frontiers, vol. 10, no. 6, pp. 2063-2084, 2019.
 
[34]  R. D. Tucker, L. D. Ashwal, M. J. Handke, M. A. Hamilton, M. Le Grange and R. A. Rambeloson, “U–Pb geochronology and isotope geochemistry of the Archean and Proterozoic Rocks of North-Central Madagascar,” The Journal of Geology, vol. 107, no. 2, pp. 135-153, 1999.
 
[35]  R. Le Maitre, A. Streckeisen, B. Zanettin, M. Le Bas, B. Bonin, P. Bateman, G. Bellieni, A. Dudek, R. Schmid, H. Sorensen and A. Woolley, Igneous rocks. A classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks, 2nd ed., L. Maitre, Ed., Cambridge University Press, New York, 2002, p. 236pp.
 
[36]  A. L. Streckeisen, “To each plutonic rock its proper name,” Earth Science Revue, vol. 4, pp. 1-33, 1976.
 
[37]  E. A. Middlemost, “Naming materials in the magma/igneous rock system,” Earth Science Reviews, vol. 37, pp. 215-224, 1994.
 
[38]  R. B. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis and C. D. Frost, “A geochemical classification for granitic rocks,” Journal of Petrology, vol. 42, no. 11, pp. 2033-2048, 2001.
 
[39]  R. B. Frost and C. D. Frost, “A Geochemicla classification for feldspathic igneous rocks,” Journal of Petrology, vol. 00, no. 0, pp. 1-15, 2008.
 
[40]  S. J. Shand, The eruptive rocks: Their genesis, composition, classification, and their relation to ore deposits with a chapter on meteorites, 2nd ed., New York: John Wiley and Sons, 1943.
 
[41]  D. B. Clarke, Granitoid Rocks, Topics in the Earth Sciences, First edition ed., H. K. Best-set Typesetter Ltd., Ed., London: Chapman & Hall, 2-6 Boundary Row, 1992.
 
[42]  A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey,” Contributions to Mineralogy and Petrology, vol. 58, pp. 63-81, 1976.
 
[43]  P. C. Rickwood, “Boundary lines within petrologic diagrams which use oxides of major and minor elements,” Lithos, vol. 22, pp. 247-263, 1989.
 
[44]  A. Harker, The natural history of igneous rocks, Methuen-London, 1909.
 
[45]  B. W. Chappell and A. J. White, “Two contrasting granite types,” Pacific Geology, vol. 8, pp. 173-174, 1974.
 
[46]  J. B. Whalen, K. L. Currie and B. W. Chappell, “A-type granites: geochemical characteristics, discrimination and petrogenesis,” Contributions to Mineralogy and Petrology, vol. 95, pp. 407-419, 1987.
 
[47]  K. M. Goodenough, R. J. Thomas, B. De Waele, R. M. Key, D. I. Schofield, W. Bauer, R. D. Tucker, J. M. Rafahatelo, M. Rabarimanana, A. V. Ralison and T. Randriamananjara, “Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar,” Lithos, vol. 116, pp. 18-34, 2010.
 
[48]  H. R. Rollinson, Using geochemical data; Evaluation, presentation, interpretation, 1st ed., Harlow, Essex England: Longman Scientific & Technical, 1993.
 
[49]  J.-L. Zhou, V. Rasoamalala, M. Razoeliarimalala, B. ralison and Z.-H. Luo, “Age and geochemistry of Early Cambrian post-collisional granites from the Ambatondrazaka area in east-central Madagascar,” Journal of African Earth Sciences, vol. 106, pp. 75-86, 2015b.
 
[50]  J. A. Pearce, “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust,” Lithos, vol. 100, no. 1-4, pp. 14-48, 2008.
 
[51]  M. Wilson, Igneous petrogenesis: a global tectonic approach, Unwin Hyman, 1989.
 
[52]  M. M. Zimmer, T. Plank, E. H. Hauri, G. M. Yogodzinski, P. Stelling, J. Larsen, B. Singer, B. Jicha, C. Mandeville and C. J. Nye, “The Role of Water in Generating the Calc-alkaline Trend: New Volatite Data for Alutian Mgmas and a New Tholeiitic Index,” Journal of Petrology, vol. 51, no. 12, pp. 2411-2444, 2010.
 
[53]  M. J. Defant and M. S. Drummond, “Deviation of some modern arc magmas by melting of young subducted lithosphere,” Nature, vol. 367, pp. 662-665, 1990.
 
[54]  H. Martin, “Adakitic magmas: modern analogues of Archaean granitoids,” Lithos, vol. 46, pp. 411-429, 1999.
 
[55]  H. Martin, R. H. Smithies, R. Rapp, J. F. Moyen and D. Champion, “An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution,” Lithos, vol. 79, pp. 1-24, 2005.
 
[56]  J. F. Moyen, “High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”,” Lithos, vol. 112, no. 2009, pp. 556-574, 2009.
 
[57]  J. P. Richards, “High Sr/Y arc magmas and porphyry Cu+/-Mo+/-Au deposits: just add water,” Economic Geology, vol. 106, no. 7, pp. 1075-1081, 2011.
 
[58]  L. Ren, H. Liang, Z. Bao, J. Zhang, K. Li and W. Huang, “Genesis of the high Sr/Y rocks in Qinling orogenic belt, Central China,” Lithos, Vols. 314-315, pp. 337-349, 2018.
 
[59]  H. Martin, “Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas,” Geology, vol. 14, pp. 753-756, 1986.
 
[60]  F. Barker, “Trondhjemite: Definition, Environment and Hypotheses of origin,” in Trondhjemites, dacites and related rocks, F. Barker, Ed., Amsterdam, Elsevier, 1979, pp. 1-12.