Journal of Geosciences and Geomatics. 2013, 1(1), 41-46
DOI: 10.12691/JGG-1-1-7
Original Research

Composition of Amphiboles from Toro Dioritic Complex, Northcentral Nigeria: A Potential Petrogenetic and Geothermobarometric Indicator

O. A Dada1, and E. C Ashano2

11Department of Marine Science and Technology, Federal University of Technology, Akure, Nigeria

2Department of Geology and Mining, University of Jos, Nigeria

Pub. Date: December 15, 2013

Cite this paper

O. A Dada and E. C Ashano. Composition of Amphiboles from Toro Dioritic Complex, Northcentral Nigeria: A Potential Petrogenetic and Geothermobarometric Indicator. Journal of Geosciences and Geomatics. 2013; 1(1):41-46. doi: 10.12691/JGG-1-1-7

Abstract

The Toro symmetrical complex is localized within the Precambrian Basement Complex of the north central Nigeria. The complex is composed of three granites types surrounding an orthoenstantite dioritic core. Amphiboles samples from the diorite have higher Mg/ (Mg+Fe) values and are richer in Si, Ti and poorer in Al and Na+K than those in the granites. The calculated P-T results show that diorite crystallized at pressures between 4.7 kbar and 5.4 kbar and temperatures of 796°C to 821°C. The hornblende-biotite granite crystallized at pressures between 5.8 kbar to 8.5 kbar and temperatures between 633°C to 771°C. The average pressure (5.1 kbar ) for dioritic amphibole corresponds approximately to 19 km in depth of emplacement for the diorite and 24km in depth of emplacement for both hornblende-biotite (average pressure = 6.5 kbar) and porphyritic hornblende-biotite granites (average pressure = 6.4 kbar). Nature of dioritic amphibole evolution, coupled with its P-T suggests that the Toro diorite may have originated earlier with non consanguineous magma source different from the granites, which corresponds to a model of origin involving melting in the lower crust under granulite facies conditions.

Keywords

amphibole composition, geothermobarometry, Toro diorite, northcentral Nigeria

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Tubosun I. A, Lancelot J. R, Rahaman M. A. and Ocan O. (1984). U-Pb Pan African ages of two charnockite- granite association from SW Nigeria. Contribution to Mineralogy and Petrology, 88, pp. 188-195.
 
[2]  Dada S.S. Lancelot J. R. and Briqueu L. (1989). “Age and origin of the annular charnockitic complex at Toro, Northern Nigeria: U-Pb and Rb-Sr evidence”. Journal of African Earth Sciences, Vol. 9, Issue 2, pp 227-234.
 
[3]  Dada S. S, Tunbosun I. A, Lancelot J. R and Lar U. A. (1993). Late Archean U-Pb age for reactivated basement of Northern Nigeria. Journal of African Earth Sciences 16, (4), pp. 405-412.
 
[4]  Annor A. E and Freeth, S. J. (1985). Thermotectonic evolution of the basement complex around Okenne, Nigeria with special reference to deformation mechanism. Precambrian Research, 28, pp. 269-281.
 
[5]  Borley G. D. (1976). Ferromagnesian mineralogy and the temperature of formation of the Younger Granites of Nigeria. In Kogbe, C. A., Geology of Nigeria. Elizabethan Publishing Company Lagos, pp. 159-176.
 
[6]  Rahaman M.A. (1988). Recent advances in the study of the Precambrian of Nigeria. 1st Symposium on Pre-Cambrian Geology of Nigeria Proceedings, Kaduna. Special Publication of Geological Survey of Nigeria.
 
[7]  Ashano E. C, Obasi C. K, Agada I. S. (2010). Crystallochemical study and petrogenesis of the Toro Dioritic Complex, northcentral, Nigeria. Journal of Mining ang Geology, 46 (1), pp. 33-48.
 
[8]  Wright E.P. (1971). Basement Complex. In Geology of the Jos Plateau. Bulletin, Geological Survey of Nigeria, 32 (1), 619 p.
 
[9]  Cooray P. G. (1975). The charnockitic rocks of Nigeria. In studies in Precambrian, 50-73.
 
[10]  Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. and Youzhi G. (1997). Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names". Canadian Mineralogy, 35: 219-246.
 
[11]  Spear F. S. (1981). An experimental study of hornblende stability and compositional variability in amphibolite. American Journal of Science, 281, 697.734.
 
[12]  Rutter M. J. (1989). Experimental data for a proposed empirical igneous geobarometer: Aluminium in hornblende at 10 kbar pressure. Geology, 17, 897-900.
 
[13]  Mader U. K and Berman R.G. (1992). Amphibole thermobarometry, a thermodynamic approach, Current Research, Part E, Geological Survey of Canada Paper 92-1 E, 393-400.
 
[14]  Ague J. J. and Brandon M. T. (1992). Tilt and northward offset of Cordilleran batholiths resolved using igneous barometry. Nature, 360, 146-149.
 
[15]  Ague J. J. (1997). Thermodynamic calculation of emplacement pressures for batholitic rocks, California: implications for the aluminum-in-hornblende barometer. Geology, 25, 563-566.
 
[16]  Ernst W. G. And Liu J. (1998). Experimental phase-equilibrium study of Al- and Ti- Contents of calcic amphibole in MORB-A semi-quantitative thermobarometer. American Mineralogist, 83, 952-969.
 
[17]  Tuloch, A. J. and Challis G. A. (2000). Emplacement depths of Palezoic-Mesozoic plutons from western New Zealand estimated by hornblende-Al geobarometry. New Zealand Journal of Geology and Geophysics, 43, 555-567.
 
[18]  Daif Menana and Arafa Ahmed (2007). Mineralogy and Geochemistry of Neogene Andesites from Annaba’s Area (North east Algeria) - Calcic Amphibole Thermobarometry. Medwell Online Journal of Earth Sciences 1 (2):101-107.
 
[19]  Kutsukake T. (1997). The depth of emplacement of the Mitsuhashi Granite pluton in the Ryoke Belt, central Japan- as inferred from some geobarometric calibrations. Journal of Geological Society of Japan, 103 (6), pp. 604-607.
 
[20]  Hammarstrom J. M and Zen E. (1986). Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogy, 71: 1297-1313.
 
[21]  Hollister L. S., Grissom G. C., Peters E. K., Stowell H.H. and Sisson V. B. (1987). Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogy, 72: 231-239.
 
[22]  Johnson M. C. and Rutherford M. J. (1988). Experimental calibration of an Aluminium-in-hornblende geobarometer applicable to calc-alkaline rocks. EOS, 69, 1511.
 
[23]  Schmidt M. W. (1992). Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol, 110: 304-310.
 
[24]  Otten M. T. (1984). The origin of brown hornblende in Artfjallet gabbro and dolerites. Contribution to Mineralogy and Petrology. 86, 189-199.
 
[25]  Giret A., Bonin B. and Léger J. M. (1980). Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring complexes. Canadian Mineralogist, 18, 481-495.