Journal of Geosciences and Geomatics. 2016, 4(1), 8-14
DOI: 10.12691/JGG-4-1-2
Original Research

Empirical Modelling of Refraction Error in Trigonometric Heighting Using Meteorological Parameters

D. Gaifillia1, V. Pagounis1, M. Tsakiri2, and V. Zacharis2

1Department of Surveying Engineering, Technological Educational Institute, Athens, Greece

2School of Rural & Surveying Engineering, National Technical University of Athens, Greece

Pub. Date: January 25, 2016

Cite this paper

D. Gaifillia, V. Pagounis, M. Tsakiri and V. Zacharis. Empirical Modelling of Refraction Error in Trigonometric Heighting Using Meteorological Parameters. Journal of Geosciences and Geomatics. 2016; 4(1):8-14. doi: 10.12691/JGG-4-1-2

Abstract

Refraction is a complex problem in terrestrial optical measurement and can be regarded as a major source of systematic error in the precise determination of height differences using trigonometric heighting. This paper deals with the development of an empirical model to estimate vertical refraction corrections from meteorological measurements gathered by freely available meteorological sensors. The proposed methodology can produce more realistic local estimates for the refraction coefficient than the typically used single generic value. Along with presentation of the proposed method, this study also presents experimental data to illustrate that the produced results are comparable to those obtained by surveying observations.

Keywords

refraction coefficient, trigonometric heighting, meteorological parameters, empirical model

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ingensand, I., “Concepts and Solutions to Overcome the Refraction Problem in Terrestrial Measurement”, Proc. FIG XXII Int. Congress, , April 19-26 2002.
 
[2]  Brocks, K., “Die Lichtstrahlkrümmung in Bodennähe. Tabellen des Refraktionskoeffizienten”, I. Teil (Bereich des Präzisionsnivellements), Dtsch. Hydrogr. Z., 3(3-4), 1950, 241-248.
 
[3]  Khamen, H. and Feig, W., Surveying, Walter de Gruyter, 1988, ISBN 3110083035.
 
[4]  Rüeger, J. M., Electronic distance measurement, Springer Verlag, Berlin, 1990.
 
[5]  Deumlich, F., Surveying instruments, De Gruyter, Berlin - New York, 1982.
 
[6]  Torge, W., Geodesy, 2nd edition, Walter de Gruyter, Berlin, New York, 1991, ISBN 3-11-012408-4.
 
[7]  Brunner, F.K., Geodetic Refraction: Effects of electromagnetic Wave Propagation Through the Atmosphere, Springer, Berlin, 1984.
 
[8]  Hirt, C., Guillaume, S., Wisbar, A., Bürki, B., and Sternberg, H., “Monitoring of the refraction coefficient in the lower atmosphere using a controlled setup of simultaneous reciprocal vertical angle measurements”, J Geophysical Research 115, 2010.
 
[9]  Illife, J.C., Dodson, A.H., “Refraction effects on precise EDM observations”, Survey Review 29(226), October 1987, pp 181-190.
 
[10]  Dodson, A.H., Zaher, M., “Refraction effects on vertical angle measurements”, Survey Review 28(217), July, 1985, pp 169-183.
 
[11]  Brunner, F.K., Kukuvec, A., “Utility of Geodetic Refraction”, Proc. INGEO 2011 – 5th Int. Conf. on Engineering Surveying, September 22-24, 2011, Brijuni, Croatia.
 
[12]  Ashkenazi, V., Howard, P.D., “An empirical method for refraction modelling in trigonometrical heighting”, Survey Review 27(213), July 1984, pp 311-322.
 
[13]  Hennes, M., “Das Nivelliersystem-Feldprüfverfahren nach ISO 17123-2 im Kontext refraktiver Störeinflüsse”, Allg. Vermess., 3, 85-94, 2006.
 
[14]  Kabashi, I., Gleichzeitig gegenseitige Zenitwinkelmessung über größere Entfernungen mit automatischen Zielsystemen, Ph.D. dissertation, 101 pp., Tech. Univ. Wien, Vienna, 2003.
 
[15]  Flach, P., “Analysis of Refraction Influences in Geodesy Using Image Processing and Turbulence Models”, Gedätisch geophys. Arb. Schweiz, vol. 63, 2001, Schweiz. Geod. Kom., Zurich, Switzerland.
 
[16]  Liptak, M., Sokol, S., “Reducing the impact of a vertical refraction by a two-regime model”, Slovak Journal of Civil Engineering, XIX(2): 21-26, 2011.
 
[17]  Labrou, E., Pantazis, G., Applied geodesy. Edition Ziti, 2010, Athens, Greece (in Greek).
 
[18]  Vlahos, D., Topography, Vol. A, Edition Ziti, 1987, Thessaloniki, Greece (in Greek).
 
[19]  Mavridis, L.N., and Papadimitriou, A.N., “Study of terrestrial refraction in the area of Tessaloniki”, J. of Geophysical Research, 78(15):2679-2684, 1973.
 
[20]  Joeckel, R., Stober, M., and Huep, W., “Elektronische Entferungs und Richtungsmessung und ihre Integration in aktuelle Positionierungsverfahren”, 2008, Wichmann Verlag, Heidelberg, Germany.
 
[21]  Bahnert, G., “Zur Bestimmung lokaler Refraktionskoeffizienten”, Vermessungstechnik, 35(1), 14-17, 1987.
 
[22]  Angus-Leppan, P. V., and Brunner, F. K., “Atmospheric temperature models for short-range E.D.M”, The Canadian Surveyor, 34 (2), 153-165, 1980.
 
[23]  Wunderlich, T., “Die voraussetzungsfreie Bestimmung von Refraktionswinkeln“, Geowiss. Mitt., vol. 26, 1985, Tech. Univ. Wien, Vienna.
 
[24]  Heer R., Niemeier, W., “Theoretical models, practical experiments, and the numerical evaluation of refraction effects in geodetic levelling” Proc. 3rd Int. Symposium on the North American Vertical Datum, 1985, Nation. Oceanic Atmos. Admin., Silver Spring, USA, pp. 321-342.
 
[25]  Kharaghani, G.A., “Propogation of refraction errors in trigonometric height traversing and geodetic leveling”, Technical Report No 132, 1987, University of New Brunswick, Canada.
 
[26]  Ingensand, H., “Concepts and solutions to overcome the refraction problem in terrestrial precision measurement”, Geodezija ir Kartografija, 34:2, 61-65, 2008.
 
[27]  Schofield, W., Breach, M., Engineering Surveying, 6th ed., Butterworth-Heinemann, 2006, Oxford, U. K.
 
[28]  Angus-Leppan, P. V., “Refraction in geodetic levelling”, Geodetic Refraction, 1984, Edited by FK Brunner, Springer-Verlang.